Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
36 result(s) for "Cock, Matthew J. W"
Sort by:
Exotic biological control agents: A solution or contribution to arthropod invasions?
Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed. Classical biological control began to be used in the late 1800s and its use increased until, beginning in 1983, scientists began raising significant concerns and questions about nontarget and indirect effects that can be caused by these introductions. In recent years, similar issues have been raised about augmentative use of exotic natural enemies. Subsequently, international guidelines, national regulations and scientific methods being used for exotic natural enemies in biological control have changed to require appropriate specificity testing, risk assessment and regulatory oversight before exotic natural enemies can be released. National and international standards aimed at minimizing risk have increased awareness and promoted more careful consideration of the costs and benefits associated with biological control. The barriers to the implementation of classical and augmentative biological control with exotic natural enemies now are sometimes difficult and, as a consequence, the numbers of classical biological control programs and releases have decreased significantly. Based in part on this new, more careful approach, classical biological control programs more recently undertaken are increasingly aimed at controlling especially damaging invasive arthropod pests that otherwise cannot be controlled. We examine evidence for these revised procedures and regulations aimed at increasing success and minimizing risk. We also discuss limitations linked to the apparent paucity of post-introduction monitoring and inherent unpredictability of indirect effects.
Shifting paradigms in the history of classical biological control
Classical biological control using insects has led to the partial or complete control of at least 226 invasive insect and 57 invasive weed species worldwide since 1888. However, at least ten introductions of biological control agents have led to unintended negative consequences and these cases have led to a focus on risk that came to dominate the science and practice of classical biological control by the 1990s. Based upon historical developments in the field we consider that the era of focus on benefits began in 1888 and that it was supplanted by an era in which the focus was on risks during the 1990s. This paradigm shift greatly improved the safety of biological control releases but also led to a decline in the number of introductions, probably resulting in opportunity costs. We note here the development of a third paradigm: one in which the benefits and risks of biological control are clearly and explicitly balanced so that decisions can be made that maximize benefits while minimizing risks.
Ecological effects of invasive alien insects
A literature survey identified 403 primary research publications that investigated the ecological effects of invasive alien insects and/or the mechanisms underlying these effects. The majority of these studies were published in the last 8 years and nearly two-thirds were carried out in North America. These publications concerned 72 invasive insect species, of which two ant species, Solenopsis invicta and Linepithema humile, accounted for 18% and 14% of the studies, respectively. Most publications investigated effects on native biodiversity at population or community level. Genetic effects and, to a lesser extent, effects on ecosystem services and processes were rarely explored. We review the effects caused by different insect invaders according to: their ecosystem roles, i.e. herbivores, predators, parasites, parasitoids and pollinators; the level of biological organisation at which they occur; and the direct and indirect mechanisms underlying these effects. The best documented effects occur in invasive ants, Eurasian forest herbivores invasive in North America, and honeybees. Impacts may occur through simple trophic interactions such as herbivory, predation or parasitism. Alien species may also affect native species and communities through more complex mechanisms such as competition for resources, disease transmission, apparent competition, or pollination disruption, among others. Finally, some invasive insects, particularly forest herbivores and ants, are known to affect ecosystem processes through cascading effects. We identify biases and gaps in our knowledge of ecological effects of invasive insects and suggest further opportunities for research.
Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database
The BIOCAT database of introductions of insect biological control agents for the control of insect pests was updated to the end of 2010 to include 6158 introductions, using 2384 different insect biological control agents against 588 pest species in 148 countries. Of the introductions, 2007 (32.6 %) led to establishment, and 620 (10.1 %) resulted in satisfactory control being reported against 172 (29.3 %) different pest species. The number of introductions has decreased each decade since the 1970s, but in the same period a higher proportion of introductions became established and contributed to successful control of target pests, and the number of countries implementing classical biological control increased. These positive trends reflect the greater research effort now made to optimize the chances of successful outcomes and increased confidence in classical biological control as a viable pest management strategy against a backdrop of a risk-averse culture that has developed in some key countries in recent years.
Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries
Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is a polyphagous pest indigenous throughout the Americas, which recently appeared in Africa, first reported from São Tomé, Nigeria, Bénin and Togo in 2016, and which we now report from Ghana. This species is recognised to comprise two morphologically identical but genetically distinct strains or species in the Americas, and we found both to be present in Ghana. We discuss possible routes of entry to Africa, of which the likeliest is adults and/or egg masses transported on direct commercial flights between the Americas and West Africa, followed by dispersal by adult flight within Africa. Identification of Lepidoptera is normally based on the markings and morphology of adults, and not on the larvae which actually cause the damage, and therefore larvae have to be reared through to adult for authoritative identification. We confirmed that the use of DNA barcoding allowed unequivocal identification of this new pest from Ghana based on the larvae alone. As authenticated barcodes for vouchered specimens of more pests become available, this approach has the potential to become a valuable in-country tool to support national capability in rapid and reliable pest diagnosis and identification.
Classical biological control of insect pests of trees: facts and figures
Classical biological control (CBC) is the introduction of a natural enemy of exotic origin to control a pest, usually also exotic, aiming at permanent control of the pest. CBC has been carried out widely over a variety of target organisms, but most commonly against insects, using parasitoids and predators and, occasionally, pathogens. Until 2010, 6158 introductions of parasitoids and predators were made against 588 insect pests, leading to the control of 172 pests. About 55% of these introductions were made against pests of woody plants. Establishment rates of natural enemies and success rates were higher in CBC projects targeting pests of woody plants than other pests. This review aims to answer the questions most commonly asked regarding CBC against insect pests, with particular emphasis on tree pests. The topics covered include, among others: variations in rates of successes among different systems, different target insect groups and different agents; temporal trends in CBC practices and successes; economic and environmental benefits; risks and ways to mitigate the risks; CBC against native pests; accidental successes through the adoption of the invasive pests by native natural enemies or accidentally introduced agents; and prospects and constraints for the practice of CBC in the future. Questions are answered based on the analysis of two databases, the BIOCAT2010 database of introductions of insect biological control agents for the CBC of insect pests, and a database of introductions of entomopathogens against insect pests.
Do new Access and Benefit Sharing procedures under the Convention on Biological Diversity threaten the future of biological control
Under the Convention on Biological Diversity (CBD) countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties [i.e. Access and Benefit Sharing (ABS)]. This also applies to species collected for potential use in biological control. Recent applications of CBD principles have already made it difficult or impossible to collect and export natural enemies for biological control research in several countries. If such an approach is widely applied it would impede this very successful and environmentally safe pest management method based on the use of biological diversity. The CBD is required to agree a comprehensive Access and Benefit Sharing process in 2010, in preparation for which the IOBC (International Organization for Biological Control of Noxious Animals and Plants) Global Commission on Biological Control and Access and Benefit Sharing has prepared this position paper. Here, we first describe the practice of biological control in relation to the principles of ABS, illustrated extensively by case studies and successes obtained with biological control. Next, we emphasise the very limited monetary benefits generated in biological control when compared to other fields of ABS such as the collection of germplasm for development of human drugs, chemical pesticides or crop cultivars. Subsequently, we inform the biological control community of good ABS practice and challenges, and we hope to make clear to the community involved in ABS under the CBD the special situation with regard to biological control. Finally, based on the non-commercial academic research model, we make recommendations which would facilitate the practice of collection and exchange of biological control agents, propose a workable framework to assist policy makers and biological control practitioners, and urge biological control leaders in each country to get involved in the discussions with their national ABS contact point to take their needs into consideration.
Unravelling the status of partially identified insect biological control agents introduced to control insects: an analysis of BIOCAT2010
The BIOCAT2010 (corrected) database of introductions of insects used as classical biological control agents (BCAs) against insects was analysed to recognise those introductions which involved a partially identified BCA, e.g. named to genus or family, but not to species. Quality controls made on a selection of these checked whether new taxonomic information in the literature had been missed from the database and this was found to be infrequent. Of 6227 BCA introductions since the 19th century, 686 (11.0%) were not identified to species level, and 74 were only identified to family or order level. Patterns by taxonomic group and countries making the introductions and the overall trend over time are presented. Since the 1990s, partially identified BCAs have been hardly used. Steps to ensure that partially identified BCAs can be identified in future are set out, and suggestions made regarding the scope for retroactive studies to recognise and name partially identified BCAs.
Ecological pest control fortifies agricultural growth in Asia–Pacific economies
The Green Revolution is credited with alleviating famine, mitigating poverty and driving aggregate economic growth since the 1960s. In Asia, high-input technology packages secured a tripling of rice output, with germplasm improvements providing benefits beyond US$4.3 billion yr –1 . Here, we unveil the magnitude and macro-economic relevance of parallel nature-based contributions to productivity growth in non-rice crops over the period 1918–2018 (across 23 different Asia–Pacific geopolitical entities). We empirically demonstrate how biological control resolved invasive pest threats in multiple agricultural commodities, ensuring annually accruing (on-farm) benefits of US$14.6–19.5 billion yr –1 . Scientifically guided biological control of 43 exotic invertebrate pests permitted 73–100% yield-loss recovery in critical food, feed and fibre crops including banana, breadfruit, cassava and coconut. Biological control thereby promoted rural growth and prosperity even in marginal, poorly endowed, non-rice environments. By placing agro-ecological innovations on equal footing with input-intensive measures, our work provides lessons for future efforts to mitigate invasive species, restore ecological resilience and sustainably raise output of global agrifood systems. Using a food systems approach, the authors show that scientifically guided insect biological control mitigated 43 pest targets between 1918 and 2018 in the Asia–Pacific region, allowing for yield-loss recoveries of up to 73–100% in non-rice critical crops, with strong impacts on rural economies.
Climate-smart pest management: building resilience of farms and landscapes to changing pest threats
Climate change is affecting the biology, distribution and outbreak potential of pests in a vast range of crops and across all land uses and landscapes. Up to 40% of the world’s food supply is already lost to pests; the reduction in pest impact is more important than ever to ensure global food security, reduced application of inputs and decreased greenhouse gas emissions. Climate-smart pest management (CSPM) is a cross-sectoral approach that aims to reduce pest-induced crop losses, enhance ecosystem services, reduce the greenhouse gas emissions intensity per unit of food produced and strengthen the resilience of agricultural systems in the face of climate change. Through the implementation of CSPM, crop production, extension, research and policy act in coordination towards more efficient and resilient food production systems.