Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
115 result(s) for "Cockburn, Myles"
Sort by:
Increasing Burden of Melanoma in the United States
It is controversial whether worldwide increases in melanoma incidence represent a true epidemic. Dramatic increases in incidence in the setting of relatively stable mortality trends have also been attributed to expanded skin screening and detection of biologically indolent tumors with low metastatic potential. To better understand how melanoma incidence trends varied by severity at diagnosis and factors relevant to screening access, we assessed recent United States incidence and mortality trends by histologic type, tumor thickness, and area-level socioeconomic status (SES). We obtained population-based data regarding diagnoses of invasive melanoma among non-Hispanic whites from nearly 291 million person-years of observation by the Surveillance Epidemiology and End Results (SEER) program (1992–2004). Age-adjusted incidence and mortality rates were calculated for SEER and a subset (California) for which small-area SES measure was available. Overall, melanoma incidence increased at 3.1% (P<0.001) per year. Statistically significant rises occurred for tumors of all histologic subtypes and thicknesses, including those >4mm. Melanoma incidence rates doubled in all SES groups over a 10-year period whereas melanoma mortality rates did not increase significantly. We conclude that screening-associated diagnosis of thinner melanomas cannot explain the increasing rates of thicker melanomas among low SES populations with poorer access to screening.
Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study
AbstractObjectiveTo examine associations between early developmental exposure to ambient pesticides and autism spectrum disorder.DesignPopulation based case-control study.SettingCalifornia’s main agricultural region, Central Valley, using 1998-2010 birth data from the Office of Vital Statistics.Population2961 individuals with a diagnosis of autism spectrum disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, revised (up to 31 December 2013), including 445 with intellectual disability comorbidity, were identified through records maintained at the California Department of Developmental Services and linked to their birth records. Controls derived from birth records were matched to cases 10:1 by sex and birth year.ExposureData from California state mandated Pesticide Use Reporting were integrated into a geographic information system tool to estimate prenatal and infant exposures to pesticides (measured as pounds of pesticides applied per acre/month within 2000 m from the maternal residence). 11 high use pesticides were selected for examination a priori according to previous evidence of neurodevelopmental toxicity in vivo or in vitro (exposure defined as ever v never for each pesticide during specific developmental periods).Main outcome measureOdds ratios and 95% confidence intervals using multivariable logistic regression were used to assess associations between pesticide exposure and autism spectrum disorder (with or without intellectual disabilities) in offspring, adjusting for confounders.ResultsRisk of autism spectrum disorder was associated with prenatal exposure to glyphosate (odds ratio 1.16, 95% confidence interval 1.06 to 1.27), chlorpyrifos (1.13, 1.05 to 1.23), diazinon (1.11, 1.01 to 1.21), malathion (1.11, 1.01 to 1.22), avermectin (1.12, 1.04 to 1.22), and permethrin (1.10, 1.01 to 1.20). For autism spectrum disorder with intellectual disability, estimated odds ratios were higher (by about 30%) for prenatal exposure to glyphosate (1.33, 1.05 to 1.69), chlorpyrifos (1.27, 1.04 to 1.56), diazinon (1.41, 1.15 to 1.73), permethrin (1.46, 1.20 to 1.78), methyl bromide (1.33, 1.07 to 1.64), and myclobutanil (1.32, 1.09 to 1.60); exposure in the first year of life increased the odds for the disorder with comorbid intellectual disability by up to 50% for some pesticide substances.ConclusionFindings suggest that an offspring’s risk of autism spectrum disorder increases following prenatal exposure to ambient pesticides within 2000 m of their mother’s residence during pregnancy, compared with offspring of women from the same agricultural region without such exposure. Infant exposure could further increase risks for autism spectrum disorder with comorbid intellectual disability.
Ambient Air Pollution and Autism in Los Angeles County, California
The prevalence of autistic disorder (AD), a serious developmental condition, has risen dramatically over the past two decades, but high-quality population-based research addressing etiology is limited. We studied the influence of exposures to traffic-related air pollution during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures. Children of mothers who gave birth in Los Angeles, California, who were diagnosed with a primary AD diagnosis at 3-5 years of age during 1998-2009 were identified through the California Department of Developmental Services and linked to 1995-2006 California birth certificates. For 7,603 children with autism and 10 controls per case matched by sex, birth year, and minimum gestational age, birth addresses were mapped and linked to the nearest air monitoring station and a LUR model. We used conditional logistic regression, adjusting for maternal and perinatal characteristics including indicators of SES. Per interquartile range (IQR) increase, we estimated a 12-15% relative increase in odds of autism for ozone [odds ratio (OR) = 1.12, 95% CI: 1.06, 1.19; per 11.54-ppb increase] and particulate matter ≤ 2.5 µm (OR = 1.15; 95% CI: 1.06, 1.24; per 4.68-μg/m3 increase) when mutually adjusting for both pollutants. Furthermore, we estimated 3-9% relative increases in odds per IQR increase for LUR-based nitric oxide and nitrogen dioxide exposure estimates. LUR-based associations were strongest for children of mothers with less than a high school education. Measured and estimated exposures from ambient pollutant monitors and LUR model suggest associations between autism and prenatal air pollution exposure, mostly related to traffic sources.
Assessment of enrollment characteristics for Children’s Oncology Group (COG) upfront therapeutic clinical trials 2004-2015
Improvements in pediatric cancer survival are attributed to cooperative clinical trials. Under-representation of specific demographic groups has been described in adult and pediatric cancer trials and poses a threat to the generalizability of results. An evaluation of data provided by the Children's Oncology Group (COG) of upfront trial enrollment for US patients 0 to 29 years old between 2004 and 2015 was performed. US cancer cases were estimated using incidence data and US population estimates from the Surveillance, Epidemiology, and End Results Program and compared to observed COG cases. Percent enrollment and standardized ratios of enrollment were calculated across demographic, disease, and socioeconomic groups. The COG website was utilized to quantify available trials and assess age eligibility. 19.9% of estimated US cancer patients age 0 to 19 years enrolled on COG trials. Younger patients were more represented across diseases and races/ethnicities. Patients with hematologic malignancies were more represented compared to solid and central nervous system (CNS) tumors. COG trial enrollment rates are declining when compared to previously published data, potentially from challenges in pediatric drug development, difficulty designing feasible trials for highly curable diagnoses, and issues ensuring trial availability for the heterogeneous group of solid and CNS tumors. Though racial/ethnic groups and county-level socioeconomic factors were proportionally represented, under representation of the adolescent/young adult (AYA) population and younger patients with solid and CNS tumors remains a concern. Targeted efforts should focus on these subgroups and further research should evaluate AYA enrollment rates across all available trials.
Population-Based Analysis of Demographic and Socioeconomic Disparities in Pediatric CNS Cancer Survival in the United States
Previous studies have demonstrated effects of racial and socioeconomic factors on survival of adults with cancer. While less studied in the pediatric population, data exist demonstrating disparities of care and survival in pediatric oncology patients based on socioeconomic and racial/ethnic factors. Brain cancers recently overtook leukemia as the number one cause of childhood cancer fatalities, but demographic and socioeconomic disparities in these tumors have not been adequately studied. We obtained data from the SEER Program of the National Cancer Institute (NCI). We selected patients under 19 years of age with central nervous system (CNS) cancers diagnosed between 2000 and 2015. We included patient demographics, tumor characteristics, treatment, and socioeconomic characteristics as covariates in the analysis. We measured overall survival and extent of disease at diagnosis. We saw that Black and Hispanic patients overall had a higher risk of death than non-Hispanic White patients on multivariable analysis. On stratified analysis, Black and Hispanic patients with both metastatic and localized disease at diagnosis had a higher risk of death compared to White, non-Hispanic patients, although the difference in Black patients was not significant after adjusting for mediating factors. However, our findings on extent of disease at diagnosis demonstrated that neither Black race nor Hispanic ethnicity increased the chance of metastatic disease at presentation when controlling for mediating variables. In summary, racial and ethnic disparities in childhood CNS tumor survival appear to have their roots at least partially in post-diagnosis factors, potentially due to the lack of access to high quality care, leading to poorer overall outcomes.
A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides
Parkinson’s disease (PD) is a complex neurodegenerative disease with etiology rooted in genetic vulnerability and environmental factors. Here we combine quantitative epidemiologic study of pesticide exposures and PD with toxicity screening in dopaminergic neurons derived from PD patient induced pluripotent stem cells (iPSCs) to identify Parkinson’s-relevant pesticides. Agricultural records enable investigation of 288 specific pesticides and PD risk in a comprehensive, pesticide-wide association study. We associate long-term exposure to 53 pesticides with PD and identify co-exposure profiles. We then employ a live-cell imaging screening paradigm exposing dopaminergic neurons to 39 PD-associated pesticides. We find that 10 pesticides are directly toxic to these neurons. Further, we analyze pesticides typically used in combinations in cotton farming, demonstrating that co-exposures result in greater toxicity than any single pesticide. We find trifluralin is a driver of toxicity to dopaminergic neurons and leads to mitochondrial dysfunction. Our paradigm may prove useful to mechanistically dissect pesticide exposures implicated in PD risk and guide agricultural policy. Parkinson’s disease (PD) is linked to environmental factors. Through quantitative epidemiology, this study ties 53 pesticides to PD. An innovative human stem cell platform revealed that 10 of these were directly toxic to human dopamine neurons.
In Utero Exposure to Toxic Air Pollutants and Risk of Childhood Autism
Background: Genetic and environmental factors are believed to contribute to the development of autism, but relatively few studies have considered potential environmental risks. Here, we examine risks for autism in children related to in utero exposure to monitored ambient air toxics from urban emissions. Methods: Among the cohort of children born in Los Angeles County, California, 1995–2006, those whose mothers resided during pregnancy in a 5-km buffer around air toxics monitoring stations were included (n = 148,722). To identify autism cases in this cohort, birth records were linked to records of children diagnosed with primary autistic disorder at the California Department of Developmental Services between 1998 and 2009 (n = 768). We calculated monthly average exposures during pregnancy for 24 air toxics selected based on suspected or known neurotoxicity or neurodevelopmental toxicity. Factor analysis helped us identify the correlational structure among air toxics, and we estimated odds ratios (ORs) for autism from logistic regression analyses. Results: Autism risks were increased per interquartile range increase in average concentrations during pregnancy of several correlated toxics mostly loading on 1 factor, including 1,3-butadiene (OR = 1.59 [95% confidence interval = 1.18–2.15]), meta/para-xylene (1.51 [1.26–1.82]), other aromatic solvents, lead (1.49 [1.23–1.81]), perchloroethylene (1.40 [1.09–1.80]), and formaldehyde (1.34 [1.17–1.52]), adjusting for maternal age, race/ethnicity, nativity, education, insurance type, parity, child sex, and birth year. Conclusions: Risks for autism in children may increase following in utero exposure to ambient air toxics from urban traffic and industry emissions, as measured by community-based air-monitoring stations.
Examining multilevel influences on parental HPV vaccine hesitancy among multiethnic communities in Los Angeles: a qualitative analysis
Background Human papillomavirus (HPV) vaccine hesitancy is a growing concern in the United States, yet understudied among racial/ethnic minority parents. We conducted qualitative research to understand parental HPV vaccine hesitancy and inform community-specific, multilevel approaches to improve HPV vaccination among diverse populations in Los Angeles. Methods We recruited American Indian/Alaska Native (AI/AN), Hispanic/Latino/a (HL) and Chinese parents of unvaccinated children (9–17 years) from low-HPV vaccine uptake regions in Los Angeles for virtual focus groups (FGs). FGs were conducted in English (2), Mandarin (1), and Spanish (1) between June-August 2021. One English FG was with AI/AN-identifying parents. FGs prompted discussions about vaccine knowledge, sources of information/hesitancy, logistical barriers and interpersonal, healthcare and community interactions regarding HPV vaccination. Guided by the social-ecological model, we identified multilevel emergent themes related to HPV vaccination. Results Parents (n = 20) in all FGs reported exposure to HPV vaccine information from the internet and other sources, including in-language media (Mandarin) and health care providers (Spanish). All FGs expressed confusion around the vaccine and had encountered HPV vaccine misinformation. FGs experienced challenges navigating relationships with children, providers, and friends/family for HPV vaccine decision-making. At the community-level, historical events contributed to mistrust (e.g., forced community displacement [AI/AN]). At the societal-level, transportation, and work schedules (Spanish, AI/AN) were barriers to vaccination. Medical mistrust contributed to HPV vaccine hesitancy across the analysis levels. Conclusion Our findings highlight the importance of multilevel influences on parental HPV vaccine hesitancy and decision-making and the need for community-specific messaging to combat medical mistrust and other barriers to HPV vaccination among racial/ethnic minority communities.
A Statewide Nested Case–Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001–2008
Preterm birth (PTB) has been associated with exposure to air pollution, but it is unclear whether effects might vary among air pollution sources and components. We studied the relationships between PTB and exposure to different components of air pollution, including gases and particulate matter (PM) by size fraction, chemical composition, and sources. Fine and ultrafine PM (respectively, PM2.5 and PM0.1) by source and composition were modeled across California over 2000-2008. Measured PM2.5, nitrogen dioxide, and ozone concentrations were spatially interpolated using empirical Bayesian kriging. Primary traffic emissions at fine scale were modeled using CALINE4 and traffic indices. Data on maternal characteristics, pregnancies, and birth outcomes were obtained from birth certificates. Associations between PTB (n = 442,314) and air pollution exposures defined according to the maternal residence at birth were examined using a nested matched case-control approach. Analyses were adjusted for maternal age, race/ethnicity, education and neighborhood income. Adjusted odds ratios for PTB in association with interquartile range (IQR) increases in average exposure during pregnancy were 1.133 (95% CI: 1.118, 1.148) for total PM2.5, 1.096 (95% CI: 1.085, 1.108) for ozone, and 1.079 (95% CI: 1.065, 1.093) for nitrogen dioxide. For primary PM, the strongest associations per IQR by source were estimated for onroad gasoline (9-11% increase), followed by onroad diesel (6-8%) and commercial meat cooking (4-7%). For PM2.5 composition, the strongest positive associations per IQR were estimated for nitrate, ammonium, and secondary organic aerosols (11-14%), followed by elemental and organic carbon (2-4%). Associations with local traffic emissions were positive only when analyses were restricted to births with residences geocoded at the tax parcel level. In our statewide nested case-control study population, exposures to both primary and secondary pollutants were associated with an increase in PTB. Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M, Escobedo L, Wu J. 2016. A statewide nested case-control study of preterm birth and air pollution by source and composition: California, 2001-2008. Environ Health Perspect 124:1479-1486; http://dx.doi.org/10.1289/ehp.1510133.
Traffic-Related Air Toxics and Term Low Birth Weight in Los Angeles County, California
Background: Numerous studies have linked criteria air pollutants with adverse birth outcomes, but there is less information on the importance of specific emission sources, such as traffic, and air toxics. Objectives: We used three exposure data sources to examine odds of term low birth weight (LBW) in Los Angeles, California, women when exposed to high levels of traffic-related air pollutants during pregnancy. Methods: We identified term births during 1 June 2004 to 30 March 2006 to women residing within 5 miles of a South Coast Air Quality Management District (SCAQMD) Multiple Air Toxics Exposure Study (MATES III) monitoring station. Pregnancy period average exposures were estimated for air toxics, including polycydic aromatic hydrocarbons (PAHs), source-specific paniculate matter < 2.5 µrn in aerodynamic diameter (PM₂.₄) based on a chemical mass balance model, criteria air pollutants from government monitoring data, and land use regression (LUR) model estimates of nitric oxide (NO), nitrogen dioxide (NO₂) and nitrogen oxides (NOX). Associations between these metrics and odds of term LBW (< 2,500 g) were examined using logistic regression. Results: Odds of term LBW increased approximately 5% per interquartile range increase in entire pregnancy exposures to several correlated traffic pollutants: LUR measures of NO, NO₂, and NOX, elemental carbon, and PM₂.₄ from diesel and gasoline combustion and paved road dust (geological PM₂.2085). Conclusions: These analyses provide additional evidence of the potential impact of traffic-related air pollution on fetal growth. Particles from traffic sources should be a focus of future studies.