Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Codezo, Yazmine B"
Sort by:
A missense in HSF2BP causing Primary Ovarian Insufficiency affects meiotic recombination by its novel interactor C19ORF57/MIDAP
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with 3 cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse, compared to a new HSF2BP knock-out mouse showed that it behaves as a hypomorphic allele. HSF2BP-S167L females show reduced fertility with small litter sizes. To obtain mechanistic insights, we identified C19ORF57/MIDAP as a strong interactor and stabilizer of HSF2BP by forming a higher-order macromolecular structure involving BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L mutation showed a strongly decreased expression of both MIDAP and HSF2BP at the recombination nodules. Although HSF2BP-S167L does not affect heterodimerization between HSF2BP and MIDAP, it promotes a lower expression of both proteins and a less proficient activity in replacing RPA by the recombinases RAD51/DMC1, thus leading to a lower frequency of cross-overs. Our results provide insights into the molecular mechanism of two novel actors of meiosis underlying non-syndromic ovarian insufficiency.
Spermatoproteasome-deficient mice are proficient in meiotic DNA repair but defective in meiotic exit
Meiotic recombination generates crossovers which are essential to ensure genome haploidization. The ubiquitin proteasome system regulates meiotic recombination through its association to the synaptonemal complex, a 'zipper'-like structure that holds homologs and provides the structural framework for meiotic recombination. Here we show that the testis-specific 4s subunit (PSMA8) of the spermatoproteasome is located at the synaptonemal complex and is essential for the assembly of its activator PA200. Accordingly, synapsis-deficient mice show delocalization of PSMA8 from the synaptonemal complex. Genetic analysis of Psma8-deficient mice show normal meiotic DNA repair, crossing over formation and an increase of spermatocytes at metaphase I and metaphase II which either enter into apoptosis or slip to give rise to an early spermatid arrest and infertility. Thus, spermatoproteasome-dependent histone degradation is dispensable for meiotic recombination. We show that PSMA8 deficiency alters the proteostasis of several key meiotic players such as acetylated histones, SYCP3, SYCP1, CDK1 and TRIP13 which in turn leads to an aberrant meiotic exit and early spermatid arrest prior to the histone displacement process that take place subsequently.