Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
58 result(s) for "Coffee, R N"
Sort by:
Attosecond time–energy structure of X-ray free-electron laser pulses
The time–energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
X-ray and optical wave mixing
Light–matter interactions are ubiquitous, and underpin a wide range of basic research fields and applied technologies. Although optical interactions have been intensively studied, their microscopic details are often poorly understood and have so far not been directly measurable. X-ray and optical wave mixing was proposed nearly half a century ago as an atomic-scale probe of optical interactions but has not yet been observed owing to a lack of sufficiently intense X-ray sources. Here we use an X-ray laser to demonstrate X-ray and optical sum-frequency generation. The underlying nonlinearity is a reciprocal-space probe of the optically induced charges and associated microscopic fields that arise in an illuminated material. To within the experimental errors, the measured efficiency is consistent with first-principles calculations of microscopic optical polarization in diamond. The ability to probe optical interactions on the atomic scale offers new opportunities in both basic and applied areas of science. A free-electron laser provides a sufficiently intense source of X-rays to allow X-ray and optical wave mixing, here demonstrated by measuring the induced charge density and associated microscopic fields in single-crystal diamond. Now X-rays and light do mix Interactions between light and matter are central to many areas of science, but the microscopic details of how light can change matter remain unclear because of observational difficulties. These details can be probed by mixing X-rays and optical waves, an X-ray-scattering process that was proposed nearly half a century ago, but was beyond the technology of the time. Now, with the advent of free-electron lasers, X-rays of sufficient intensity have become available. In this week's Nature , Ernie Glover et al ., working with the Linac Coherent Light Source, report X-ray and optical mixing (or sum-frequency generation) in diamond. The new capability may enable direct visualization of the making and breaking of chemical bonds.
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers. X-ray free-electron lasers, important light sources for materials research, suffer from shot-to-shot fluctuations that necessitate complex diagnostics. Here, the authors apply machine learning to accurately predict pulse properties, using parameters that can be acquired at high-repetition rates.
Ultrafast X-ray Auger probing of photoexcited molecular dynamics
Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state. Photoexciting molecules provides insights into their different degrees of freedom if the ultrafast electron and nuclei motion can be properly analysed. To this end, McFarland et al. use X-ray pump-probe techniques to show that Auger spectra can unveil information on nuclear relaxation in molecules.
Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers
Some X-ray free-electron laser facilities are pushing towards sub-10 fs pulses, making it desirable to reduce errors in X-ray/optical delay measurements to the 1 fs level. Researchers have now demonstrated X-ray measurements with a temporal resolution shorter than 1 fs, opening up new possibilities for time-resolved X-ray experiments. Today's brightest coherent X-ray sources, X-ray free-electron lasers, produce ultrafast X-ray pulses for which full-width at half-maximum durations as short as 3 fs have been measured 1 . There has been a marked increase in the popularity of such short pulses now that optical timing techniques have begun to report an X-ray/optical delay below ∼10 fs r.m.s. errors. As a result, sub-10 fs optical pulses have been implemented at the Linac Coherent Light Source (LCLS) X-ray beamlines, thus warranting a push to reduce the error in X-ray/optical delay measurements to the 1 fs level. Here, we report a unique two-dimensional spectrogram measurement of the relative X-ray/optical delay. This easily scalable relative delay measurement already surpasses previous techniques by an order of magnitude with its sub-1 fs temporal resolution and opens up the prospect of time-resolved X-ray measurements to the attosecond community.
Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon
Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state. A pronounced forward-backward symmetry breaking of the angularly resolved emission patterns with respect to the light propagation direction is experimentally observed and theoretically explained for the region of the Cooper minimum, where the asymmetry of electron emission is strongly enhanced. These findings aim to originate a better understanding of the fundamentals of photon momentum transfer in ionic matter. Exploring the photoionization process leads to better understanding of the fundamental interactions between light and matter. Here the authors show the non-dipole contribution in the form of asymmetric photoelectron angular distribution from the ionization of argon atoms and ions.
Few-femtosecond resolved imaging of laser-driven nanoplasma expansion
The free expansion of a planar plasma surface is a fundamental non-equilibrium process relevant for various fields but as-yet experimentally still difficult to capture. The significance of the associated spatiotemporal plasma motion ranges from astrophysics and controlled fusion to laser machining, surface high-harmonic generation, plasma mirrors, and laser-driven particle acceleration. Here, we show that x-ray coherent diffractive imaging can surpass existing approaches and enables the quantitative real-time analysis of the sudden free expansion of laser-heated nanoplasmas. For laser-ionized SiO 2 nanospheres, we resolve the formation of the emerging nearly self-similar plasma profile evolution and expose the so far inaccessible shell-wise expansion dynamics including the associated startup delay and rarefaction front velocity. Our results establish time-resolved diffractive imaging as an accurate quantitative diagnostic platform for tracing and characterizing plasma expansion and indicate the possibility to resolve various laser-driven processes including shock formation and wave-breaking phenomena with unprecedented resolution.
Covariance mapping of two-photon double core hole states in C2H2 and C2H6 produced by an x-ray free electron laser
Few-photon ionization and relaxation processes in acetylene (C2H2) and ethane (C2H6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.
Polarization control in an X-ray free-electron laser
X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500–1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98 –0.04 +0.02 at 707 eV and may be scanned in energy. We also present a new two-colour X-ray pump–X-ray probe operating mode for the LCLS. Energy differences of Δ E / E  = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified. Tunable polarization control and a two-colour X-ray pump–X-ray probe operating mode are demonstrated at the Linac Coherent Light Source (LCLS).