Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,567
result(s) for
"Cohen, Kevin"
Sort by:
A corpus of full-text journal articles is a robust evaluation tool for revealing differences in performance of biomedical natural language processing tools
2012
Background
We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus.
Results
Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data.
Conclusions
The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications.
Journal Article
Overview of the BioCreative III Workshop
2011
Background
The overall goal of the BioCreative Workshops is to promote the development of text mining and text processing tools which are useful to the communities of researchers and database curators in the biological sciences. To this end BioCreative I was held in 2004, BioCreative II in 2007, and BioCreative II.5 in 2009. Each of these workshops involved humanly annotated test data for several basic tasks in text mining applied to the biomedical literature. Participants in the workshops were invited to compete in the tasks by constructing software systems to perform the tasks automatically and were given scores based on their performance. The results of these workshops have benefited the community in several ways. They have 1) provided evidence for the most effective methods currently available to solve specific problems; 2) revealed the current state of the art for performance on those problems; 3) and provided gold standard data and results on that data by which future advances can be gauged. This special issue contains overview papers for the three tasks of BioCreative III.
Results
The BioCreative III Workshop was held in September of 2010 and continued the tradition of a challenge evaluation on several tasks judged basic to effective text mining in biology, including a gene normalization (GN) task and two protein-protein interaction (PPI) tasks. In total the Workshop involved the work of twenty-three teams. Thirteen teams participated in the GN task which required the assignment of EntrezGene IDs to all named genes in full text papers without any species information being provided to a system. Ten teams participated in the PPI article classification task (ACT) requiring a system to classify and rank a PubMed
®
record as belonging to an article either having or not having “PPI relevant” information. Eight teams participated in the PPI interaction method task (IMT) where systems were given full text documents and were required to extract the experimental methods used to establish PPIs and a text segment supporting each such method. Gold standard data was compiled for each of these tasks and participants competed in developing systems to perform the tasks automatically.
BioCreative III also introduced a new interactive task (IAT), run as a demonstration task. The goal was to develop an interactive system to facilitate a user’s annotation of the unique database identifiers for all the genes appearing in an article. This task included ranking genes by importance (based preferably on the amount of described experimental information regarding genes). There was also an optional task to assist the user in finding the most relevant articles about a given gene. For BioCreative III, a user advisory group (UAG) was assembled and played an important role 1) in producing some of the gold standard annotations for the GN task, 2) in critiquing IAT systems, and 3) in providing guidance for a future more rigorous evaluation of IAT systems. Six teams participated in the IAT demonstration task and received feedback on their systems from the UAG group. Besides innovations in the GN and PPI tasks making them more realistic and practical and the introduction of the IAT task, discussions were begun on community data standards to promote interoperability and on user requirements and evaluation metrics to address utility and usability of systems.
Conclusions
In this paper we give a brief history of the BioCreative Workshops and how they relate to other text mining competitions in biology. This is followed by a synopsis of the three tasks GN, PPI, and IAT in BioCreative III with figures for best participant performance on the GN and PPI tasks. These results are discussed and compared with results from previous BioCreative Workshops and we conclude that the best performing systems for GN, PPI-ACT and PPI-IMT in realistic settings are not sufficient for fully automatic use. This provides evidence for the importance of interactive systems and we present our vision of how best to construct an interactive system for a GN or PPI like task in the remainder of the paper.
Journal Article
Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium
by
Stevens, David A.
,
Spormann, Alfred M.
,
Nazik, Hasan
in
Airway management
,
Antimicrobial agents
,
Aspergillus fumigatus
2015
Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF), where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.
Journal Article
Special Issue on the Curative Power of Medical Data
by
Cohen, Kevin
,
Gîfu, Daniela
,
Trandabăț, Diana
in
Biomedical data
,
Biomedical research
,
Crowdsourcing
2019
With the massive amounts of medical data made available online, language technologies have proven to be indispensable in processing biomedical and molecular biology literature, health data or patient records. With huge amount of reports, evaluating their impact has long ceased to be a trivial task. Linking the contents of these documents to each other, as well as to specialized ontologies, could enable access to and the discovery of structured clinical information and could foster a major leap in natural language processing and in health research. The aim of this Special Issue, “Curative Power of Medical Data” in Data, is to gather innovative approaches for the exploitation of biomedical data using semantic web technologies and linked data by developing a community involvement in biomedical research. This Special Issue contains four surveys, which include a wide range of topics, from the analysis of biomedical articles writing style, to automatically generating tests from medical references, constructing a Gold standard biomedical corpus or the visualization of biomedical data.
Journal Article
Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades
2015
Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches.
Journal Article
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
by
Hamilton, Tara J
,
van Schaik, André
,
Stiefel, Klaus M
in
Algorithms
,
Artificial intelligence
,
Cognitive ability
2013
The advent of large scale neural computational platforms has highlighted the lack of algorithms for synthesis of neural structures to perform predefined cognitive tasks. The Neural Engineering Framework (NEF) offers one such synthesis, but it is most effective for a spike rate representation of neural information, and it requires a large number of neurons to implement simple functions. We describe a neural network synthesis method that generates synaptic connectivity for neurons which process time-encoded neural signals, and which makes very sparse use of neurons. The method allows the user to specify-arbitrarily-neuronal characteristics such as axonal and dendritic delays, and synaptic transfer functions, and then solves for the optimal input-output relationship using computed dendritic weights. The method may be used for batch or online learning and has an extremely fast optimization process. We demonstrate its use in generating a network to recognize speech which is sparsely encoded as spike times.
Journal Article
Interpersonal prosodic correlation in frontotemporal dementia
by
Ross, Elliott D.
,
Pressman, Peter S.
,
Chen, Kuan‐Hua
in
Aged
,
Brief Communication
,
Brief Communications
2019
Communication accommodation describes how individuals adjust their communicative style to that of their conversational partner. We predicted that interpersonal prosodic correlation related to pitch and timing would be decreased in behavioral variant frontotemporal dementia (bvFTD). We predicted that the interpersonal correlation in a timing measure and a pitch measure would be increased in right temporal FTD (rtFTD) due to sparing of the neural substrate for speech timing and pitch modulation but loss of social semantics. We found no significant effects in bvFTD, but conversations including rtFTD demonstrated higher interpersonal correlations in speech rate than healthy controls.
Journal Article
Sentiment Analysis of Suicide Notes: A Shared Task
2012
This paper reports on a shared task involving the assignment of emotions to suicide notes. Two features distinguished this task from previous shared tasks in the biomedical domain. One is that it resulted in the corpus of fully anonymized clinical text and annotated suicide notes. This resource is permanently available and will (we hope) facilitate future research. The other key feature of the task is that it required categorization with respect to a large set of labels. The number of participants was larger than in any previous biomedical challenge task. We describe the data production process and the evaluation measures, and give a preliminary analysis of the results. Many systems performed at levels approaching the inter-coder agreement, suggesting that human-like performance on this task is within the reach of currently available technologies.
Journal Article
Optimizing anxiolysis and analgesia for percutaneous intervention by the abdominal radiologist
2022
Abdominal radiologists perform a wide variety of image-guided interventions. Procedures performed by abdominal radiologists can be broadly categorized into paracentesis, thoracentesis, superficial and deep soft tissue biopsy, drain placement, and ablation. As these procedures continue to develop as an alternative to more invasive and potentially morbid interventions, and with continued improvements in minimally invasive technologies, it becomes increasingly important for abdominal radiologists to be familiar with options for peri-procedural analgesia and anxiolysis, as well as when to consult anesthesiology. In this review, we discuss analgesic, anxiolytic, and nonpharmacologic options available to the abdominal radiologist. We focus on practical agents that are relatively safe for general use, special populations, and considerations for post-procedural monitoring.
Journal Article
Mining FDA drug labels for medical conditions
by
Li, Qi
,
Lingren, Todd
,
Stoutenborough, Laura
in
Adverse Drug Reaction Reporting Systems
,
Complications and side effects
,
Computational linguistics
2013
Background
Cincinnati Children’s Hospital Medical Center (CCHMC) has built the initial Natural Language Processing (NLP) component to extract medications with their corresponding medical conditions (Indications, Contraindications, Overdosage, and Adverse Reactions) as triples of medication-related information ([(1) drug name]-[(2) medical condition]-[(3) LOINC section header]) for an intelligent database system, in order to improve patient safety and the quality of health care. The Food and Drug Administration’s (FDA) drug labels are used to demonstrate the feasibility of building the triples as an intelligent database system task.
Methods
This paper discusses a hybrid NLP system, called AutoMCExtractor, to collect medical conditions (including disease/disorder and sign/symptom) from drug labels published by the FDA. Altogether, 6,611 medical conditions in a manually-annotated gold standard were used for the system evaluation. The pre-processing step extracted the plain text from XML file and detected eight related LOINC sections (e.g. Adverse Reactions, Warnings and Precautions) for medical condition extraction. Conditional Random Fields (CRF) classifiers, trained on token, linguistic, and semantic features, were then used for medical condition extraction. Lastly, dictionary-based post-processing corrected boundary-detection errors of the CRF step. We evaluated the AutoMCExtractor on manually-annotated FDA drug labels and report the results on both token and span levels.
Results
Precision, recall, and F-measure were 0.90, 0.81, and 0.85, respectively, for the span level exact match; for the token-level evaluation, precision, recall, and F-measure were 0.92, 0.73, and 0.82, respectively.
Conclusions
The results demonstrate that (1) medical conditions can be extracted from FDA drug labels with high performance; and (2) it is feasible to develop a framework for an intelligent database system.
Journal Article