Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Item TypeItem Type
-
YearFrom:-To:
-
More FiltersMore FiltersIs Full-Text AvailableSubjectPublisherSourceLanguagePlace of PublicationContributors
Done
Filters
Reset
1,249
result(s) for
"Cohen, Stanley"
Sort by:
Oral surveillance and JAK inhibitor safety: the theory of relativity
2022
The published results of the post-marketing ORAL Surveillance study, which compared the Janus kinase (JAK) inhibitor tofacitinib with anti-TNF therapy in older patients with rheumatoid arthritis who have cardiovascular risk factors, have led to changes in the recommendations for the use of JAK inhibitors. Although new safety signals have emerged for tofacitinib, namely malignancy and cardiovascular disease, it should be noted that these signals are relative to those seen with TNF blockers. The new data further raise our intrigue that venous thromboembolism might be a true risk related to JAK inhibition. Reassuringly, the totality of the findings from this newly published study and the other data collected to date suggest that JAK inhibitors can be used safely at approved doses by many patients with rheumatoid arthritis.In this Perspective article, the authors discuss the results of the post-marketing ORAL Surveillance study comparing the safety of the JAK inhibitor tofacitinib and TNF inhibition in patients with rheumatoid arthritis, as well as the potential implications for clinical practice.
Journal Article
ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries
by
Kwo, Paul Y
,
Lim, Joseph K
,
Cohen, Stanley M
in
Alanine Transaminase - blood
,
Alkaline Phosphatase - blood
,
alpha 1-Antitrypsin Deficiency - blood
2017
Clinicians are required to assess abnormal liver chemistries on a daily basis. The most common liver chemistries ordered are serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and bilirubin. These tests should be termed liver chemistries or liver tests. Hepatocellular injury is defined as disproportionate elevation of AST and ALT levels compared with alkaline phosphatase levels. Cholestatic injury is defined as disproportionate elevation of alkaline phosphatase level as compared with AST and ALT levels. The majority of bilirubin circulates as unconjugated bilirubin and an elevated conjugated bilirubin implies hepatocellular disease or cholestasis. Multiple studies have demonstrated that the presence of an elevated ALT has been associated with increased liver-related mortality. A true healthy normal ALT level ranges from 29 to 33 IU/l for males, 19 to 25 IU/l for females and levels above this should be assessed. The degree of elevation of ALT and or AST in the clinical setting helps guide the evaluation. The evaluation of hepatocellular injury includes testing for viral hepatitis A, B, and C, assessment for nonalcoholic fatty liver disease and alcoholic liver disease, screening for hereditary hemochromatosis, autoimmune hepatitis, Wilson's disease, and alpha-1 antitrypsin deficiency. In addition, a history of prescribed and over-the-counter medicines should be sought. For the evaluation of an alkaline phosphatase elevation determined to be of hepatic origin, testing for primary biliary cholangitis and primary sclerosing cholangitis should be undertaken. Total bilirubin elevation can occur in either cholestatic or hepatocellular diseases. Elevated total serum bilirubin levels should be fractionated to direct and indirect bilirubin fractions and an elevated serum conjugated bilirubin implies hepatocellular disease or biliary obstruction in most settings. A liver biopsy may be considered when serologic testing and imaging fails to elucidate a diagnosis, to stage a condition, or when multiple diagnoses are possible.
Journal Article
DNA cloning: A personal view after 40 years
2013
In November 1973, my colleagues A. C. Y. Chang, H. W. Boyer, R. B. Helling, and I reported in PNAS that individual genes can be cloned and isolated by enzymatically cleaving DNA molecules into fragments, linking the fragments to an autonomously replicating plasmid, and introducing the resulting recombinant DNA molecules into bacteria. A few months later, Chang and I reported that genes from unrelated bacterial species can be combined and propagated using the same approach and that interspecies recombinant DNA molecules can produce a biologically functional protein in a foreign host. Soon afterward, Boyer’s laboratory and mine published our collaborative discovery that even genes from animal cells can be cloned in bacteria. These three PNAS papers quickly led to the use of DNA cloning methods in multiple areas of the biological and chemical sciences. They also resulted in a highly public controversy about the potential hazards of laboratory manipulation of genetic material, a decision by Stanford University and the University of California to seek patents on the technology that Boyer and I had invented, and the application of DNA cloning methods for commercial purposes. In the 40 years that have passed since publication of our findings, use of DNA cloning has produced insights about the workings of genes and cells in health and disease and has altered the nature of the biotechnology and biopharmaceutical industries. Here, I provide a personal perspective of the events that led to, and followed, our report of DNA cloning.
Journal Article
JAK inhibitors and VTE risk: how concerned should we be?
2021
Janus kinase (JAK) inhibitors have become standard treatment for patients with rheumatoid arthritis who do not respond well to other DMARDs. Concerns have been raised over an increased risk of venous thromboembolism with JAK inhibitors, tempering enthusiasm for their use in the clinic, but are these concerns justified?
Journal Article
Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
by
Nabhan, Joseph F
,
Hu, Ruoxi
,
Oh, Raymond S
in
Adenosine triphosphatase
,
Adenosine Triphosphatases
,
Adenosine Triphosphatases - metabolism
2012
Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.
Journal Article
Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials
2017
ObjectivesTofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). We report an integrated safety summary of tofacitinib from two phase I, nine phase II, six phase III and two long-term extension studies in adult patients with active RA.MethodsData were pooled for all tofacitinib-treated patients (data cut-off: 31 March 2015). Incidence rates (IRs; patients with event/100 patient-years) and 95% CIs are reported for adverse events (AEs) of interest.Results6194 patients received tofacitinib for a total 19 406 patient-years' exposure; median exposure was 3.4 patient-years. IR (95% CI) for serious AEs was 9.4 (9.0 to 9.9); IR for serious infections was 2.7 (2.5 to 3.0). IR for (all) herpes zoster was 3.9 (3.6 to 4.2); IR for disseminated or multidermatomal herpes zoster was 0.3 (0.2 to 0.4). IR for opportunistic infections (excluding tuberculosis) was 0.3 (0.2 to 0.4) and was 0.2 (0.1 to 0.3) for tuberculosis. IR for malignancies (excluding non-melanoma skin cancer (NMSC)) was 0.9 (0.8 to 1.0); NMSC IR was 0.6 (0.5 to 0.7). IR for gastrointestinal perforations was 0.1 (0.1 to 0.2). Analysis of IR for serious infections, herpes zoster and malignancies by 6-month intervals did not reveal any notable increase in IR with longer-duration tofacitinib exposure.ConclusionThis analysis of tofacitinib exposure up to 8.5 years allowed estimation of safety events with improved precision versus previous tofacitinib reports. AEs were generally stable over time; no new safety signals were observed compared with previous tofacitinib reports.Trial registration numbers NCT01262118, NCT01484561, NCT00147498, NCT00413660, NCT00550446, NCT00603512, NCT00687193, NCT01164579, NCT00976599, NCT01059864, NCT01359150, NCT00960440, NCT00847613, NCT00814307, NCT00856544, NCT00853385, NCT01039688, NCT00413699, NCT00661661; Results.
Journal Article
Continuing Medical Education Questions: May 2021
2021
Article Title: ACG Clinical Guideline: Diagnosis and Management of Idiosyncratic Drug-Induced Liver Injury
Journal Article
Continuing Medical Education Questions: May 2021
2021
Article TitleACG Clinical GuidelineDiagnosis and Management of Idiosyncratic Drug-Induced Liver Injury
Journal Article
Safety profile of upadacitinib in rheumatoid arthritis: integrated analysis from the SELECT phase III clinical programme
by
Cohen, Stanley B
,
Bessette, Louis
,
Zerbini, Cristiano A F
in
Adalimumab - adverse effects
,
Adverse events
,
Antirheumatic Agents - adverse effects
2021
ObjectivesThis integrated analysis presents the safety profile of upadacitinib, a Janus kinase inhibitor, at 15 mg and 30 mg once daily in patients with moderately to severely active rheumatoid arthritis (RA).MethodsTreatment-emergent adverse events (TEAEs) and laboratory data from five randomised, placebo- or active-controlled phase III trials of upadacitinib for patients with RA were analysed and summarised. Exposure-adjusted event rates are shown for placebo (three trials; 12/14 weeks), methotrexate (two trials; mean exposure: 36 weeks), adalimumab (one trial; mean exposure: 42 weeks), upadacitinib 15 mg (five trials; mean exposure: 53 weeks) and upadacitinib 30 mg (four trials; mean exposure: 59 weeks).Results3834 patients received one or more doses of upadacitinib 15 mg (n=2630) or 30 mg (n=1204), for a total of 4020.1 patient-years of exposure. Upper respiratory tract infection, nasopharyngitis and urinary tract infection were the most commonly reported TEAEs with upadacitinib. Rates of serious infection were similar between upadacitinib 15 mg and adalimumab but higher compared with methotrexate. Rates of herpes zoster and creatine phosphokinase (CPK) elevations were higher in both upadacitinib groups versus methotrexate and adalimumab, and rates of gastrointestinal perforations were higher with upadacitinib 30 mg. Rates of deaths, malignancies, adjudicated major adverse cardiovascular events (MACEs) and venous thromboembolic events (VTEs) were similar across treatment groups.ConclusionIn the phase III clinical programme for RA, patients receiving upadacitinib had an increased risk of herpes zoster and CPK elevation versus adalimumab. Rates of malignancies, MACEs and VTEs were similar among patients receiving upadacitinib, methotrexate or adalimumab.Trial registration numbersSELECT-EARLY: NCT02706873; SELECT-NEXT: NCT02675426; SELECT-COMPARE: NCT02629159; SELECT-MONOTHERAPY: NCT02706951; SELECT-BEYOND: NCT02706847.
Journal Article