Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Coimbra, Sílvia"
Sort by:
Three Decades of Advances in Arabinogalactan-Protein Biosynthesis
2020
Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydroxyproline-rich glycoproteins. Approximately 90% of the molecules consist of arabinogalactan polysaccharides, which are composed of arabinose and galactose as major sugars and minor sugars such as glucuronic acid, fucose, and rhamnose. About half of the AGP family members contain a glycosylphosphatidylinositol (GPI) lipid anchor, which allows for an association with the outer leaflet of the plasma membrane. The mysterious AGP family has captivated the attention of plant biologists for several decades. This diverse family of glycoproteins is widely distributed in the plant kingdom, including many algae, where they play fundamental roles in growth and development processes. The journey of AGP biosynthesis begins with the assembly of amino acids into peptide chains of proteins. An N-terminal signal peptide directs AGPs toward the endoplasmic reticulum, where proline hydroxylation occurs and a GPI anchor may be added. GPI-anchored AGPs, as well as unanchored AGPs, are then transferred to the Golgi apparatus, where extensive glycosylation occurs by the action of a variety glycosyltransferase enzymes. Following glycosylation, AGPs are transported by secretory vesicles to the cell wall or to the extracellular face of the plasma membrane (in the case of GPI-anchored AGPs). GPI-anchored proteins can be released from the plasma membrane into the cell wall by phospholipases. In this review, we present an overview of the accumulated knowledge on AGP biosynthesis over the past three decades. Particular emphasis is placed on the glycosylation of AGPs as the sugar moiety is essential to their function. Recent genetics and genomics approaches have significantly contributed to a broader knowledge of AGP biosynthesis. However, many questions remain to be elucidated in the decades ahead.
Journal Article
Advances in plant reproduction
by
Coimbra, Sílvia
,
Pereira, Ana Marta
in
Germ Cells, Plant - physiology
,
Plant Physiological Phenomena
,
Reproduction
2019
At a time of unprecedented human population growth, climate change, and losses in biodiversity, plant reproduction is a particularly strategic research topic. From the very moment that a sporophytic cell switches its developmental pathway to become the megasporocyte or microsporocyte until a seed is finally formed, an intricate network of tightly regulated signalling pathways is in action. In recent years our understanding of the plant reproductive system has evolved enormously, and at a great pace. This special issue includes a collection of reviews that present the current state of the art across several areas of research in plant reproduction.
Journal Article
Transcriptomic landscape of seedstick in Arabidopsis thaliana funiculus after fertilisation
by
Takeuchi, Hidenori
,
Coimbra, Sílvia
,
Higashiyama, Tetsuya
in
Abscission
,
Agriculture
,
Analysis
2024
Background
In Angiosperms, the continuation of plant species is intricately dependent on the funiculus multifaceted role in nutrient transport, mechanical support, and dehiscence of seeds. SEEDSTICK (STK) is a MADS-box transcription factor involved in seed size and abscission, and one of the few genes identified as affecting funiculus growth. Given the importance of the funiculus to a correct seed development, allied with previous phenotypic observations of
stk
mutants, we performed a transcriptomic analysis of
stk
funiculi from floral stage 17, using RNA-sequencing, to infer on the deregulated networks of genes.
Results
The generated dataset of differentially expressed genes was enriched with cell wall biogenesis, cell cycle, sugar metabolism and transport terms, all in accordance with
stk
phenotype observed in funiculi from floral stage 17. We selected eight differentially expressed genes for transcriptome validation using qPCR and/or promoter reporter lines. Those genes were involved with abscission, seed development or novel functions in
stk
funiculus, such as hormones/secondary metabolites transport.
Conclusion
Overall, the analysis performed in this study allowed delving into the STK-network established in Arabidopsis funiculus, fulfilling a literature gap. Simultaneously, our findings reinforced the reliability of the transcriptome, making it a valuable resource for candidate genes selection for functional genetic studies in the funiculus. This will enhance our understanding on the regulatory network controlled by STK, on the role of the funiculus and how seed development may be affected by them.
Journal Article
I Choose You: Selecting Accurate Reference Genes for qPCR Expression Analysis in Reproductive Tissues in Arabidopsis thaliana
by
Coimbra, Sílvia
,
Ferreira, Maria João
,
Pinto, Sara Cristina
in
Arabidopsis - genetics
,
Arabidopsis thaliana
,
Developmental stages
2023
Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publications continue to present qPCR results normalised to a single reference gene and, to our knowledge, no comparative evaluation of multiple reference genes has been carried out in specific reproductive tissues of Arabidopsis thaliana. Herein, we assessed the expression stability levels of ten candidate reference genes (UBC9, ACT7, GAPC-2, RCE1, PP2AA3, TUA2, SAC52, YLS8, SAMDC and HIS3.3) in two conditional sets: one across flower development and the other using inflorescences from different genotypes. The stability analysis was performed using the RefFinder tool, which combines four statistical algorithms (geNorm, NormFinder, BestKeeper and the comparative ΔCt method). Our results showed that RCE1, SAC52 and TUA2 had the most stable expression in different flower developmental stages while YLS8, HIS3.3 and ACT7 were the top-ranking reference genes for normalisation in mutant studies. Furthermore, we validated our results by analysing the expression pattern of genes involved in reproduction and examining the expression of these genes in published mutant backgrounds. Overall, we provided a pool of appropriate reference genes for expression studies in reproductive tissues of A. thaliana, which will facilitate further gene expression studies in this context. More importantly, we presented a framework that will promote a consistent and accurate analysis of gene expression in any scientific field. Simultaneously, we highlighted the relevance of clearly defining and describing the experimental conditions associated with qPCR to improve scientific reproducibility.
Journal Article
The best CRISPR/Cas9 versus RNA interference approaches for Arabinogalactan proteins’ study
by
Coimbra, Sílvia
,
Pereira, Ana Marta
,
Moreira, Diana
in
Animal Anatomy
,
Animal Biochemistry
,
Animals
2020
Arabinogalactan Proteins (AGPs) are hydroxyproline-rich proteins containing a high proportion of carbohydrates, widely spread in the plant kingdom. AGPs have been suggested to play important roles in plant development processes, especially in sexual plant reproduction. Nevertheless, the functions of a large number of these molecules, remains to be discovered. In this review, we discuss two revolutionary genetic techniques that are able to decode the roles of these glycoproteins in an easy and efficient way. The RNA interference is a frequently technique used in plant biology that promotes genes silencing. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)—associated protein 9 (CRISPR/Cas9), emerged a few years ago as a revolutionary genome-editing technique that has allowed null mutants to be obtained in a wide variety of organisms, including plants. The two techniques have some differences between them and depending on the research objective, these may work as advantage or disadvantage. In the present work, we propose the use of the two techniques to obtain AGP mutants easily and quickly, helping to unravel the role of AGPs, surely a great asset for the future.
Journal Article
DNA–protein interaction studies: a historical and comparative analysis
by
Ferraz, Ricardo André Campos
,
da Silva, Jessy Ariana Faria
,
de Almeida Coimbra, Sílvia Vieira
in
Amino acids
,
Binding proteins
,
Binding sites
2021
DNA–protein interactions are essential for several molecular and cellular mechanisms, such as transcription, transcriptional regulation, DNA modifications, among others. For many decades scientists tried to unravel how DNA links to proteins, forming complex and vital interactions. However, the high number of techniques developed for the study of these interactions made the choice of the appropriate technique a difficult task. This review intends to provide a historical context and compile the methods that describe DNA–protein interactions according to the purpose of each approach, summarise the respective advantages and disadvantages and give some examples of recent uses for each technique. The final aim of this work is to help in deciding which technique to perform according to the objectives and capacities of each research team. Considering the DNA–binding proteins characterisation, filter binding assay and EMSA are easy in vitro methods that rapidly identify nucleic acid-protein binding interactions. To find DNA-binding sites, DNA-footprinting is indeed an easier, faster and reliable approach, however, techniques involving base analogues and base-site selection are more precise. Concerning binding kinetics and affinities, filter binding assay and EMSA are useful and easy methods, although SPR and spectroscopy techniques are more sensitive. Finally, relatively to genome-wide studies, ChIP–seq is the desired method, given the coverage and resolution of the technique. In conclusion, although some experiments are easier and faster than others, when designing a DNA–protein interaction study several concerns should be taken and different techniques may need to be considered, since different methods confer different precisions and accuracies.
Journal Article
Insights into secrets along the pollen tube pathway in need to be discovered
2019
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed—the ultimate aim of the process—will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen–pistil interactions that give rise to the new seed.
Journal Article
New insights on the expression patterns of specific Arabinogalactan proteins in reproductive tissues of Arabidopsis thaliana
by
Coimbra, Sílvia
,
Silva, Jessy
,
Mendes, Sara
in
Arabidopsis
,
Arabinogalactan
,
Arabinogalactan proteins
2022
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for male and female gametophyte development, pollen tube growth and guidance, and successful fertilization. However, the functions of many of these proteins have yet to be uncovered, mainly due to the difficulty to study individual AGPs. In this work, we generated molecular tools to analyze the expression patterns of a subgroup of individual AGPs in different Arabidopsis tissues, focusing on reproductive processes. This study focused on six AGPs: four classical AGPs (AGP7, AGP25, AGP26, AGP27), one AG peptide (AGP24) and one chimeric AGP (AGP31). These AGPs were first selected based on their predicted expression patterns along the reproductive tissues from available RNA-seq data. Promoter analysis using β-glucuronidase fusions and qPCR in different Arabidopsis tissues allowed to confirm these predictions.
AGP7
was mainly expressed in female reproductive tissues, more precisely in the style, funiculus, and integuments near the micropyle region.
AGP25
was found to be expressed in the style, septum and ovules with higher expression in the chalaza and funiculus tissues.
AGP26
was present in the ovules and pistil valves.
AGP27
was expressed in the transmitting tissue, septum and funiculus during seed development.
AGP24
was expressed in pollen grains, in mature embryo sacs, with highest expression at the chalazal pole and in the micropyle.
AGP31
was expressed in the mature embryo sac with highest expression at the chalaza and, occasionally, in the micropyle. For all these AGPs a co-expression analysis was performed providing new hints on its possible functions. This work confirmed the detection in Arabidopsis male and female tissues of six AGPs never studied before regarding the reproductive process. These results provide novel evidence on the possible involvement of specific AGPs in plant reproduction, as strong candidates to participate in pollen-pistil interactions in an active way, which is significant for this field of study.
Journal Article
Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects
by
Mollet, Jean-Claude
,
Coimbra, Sílvia
,
Vicré-Gibouin, Maïté
in
Biochemistry
,
Biochemistry, Molecular Biology
,
Biotechnology
2012
• Background Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cellwall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. • Scope In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Journal Article