Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62
result(s) for
"Colangeli, L."
Sort by:
Virtis: An Imaging Spectrometer for the Rosetta Mission
2007
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.
Journal Article
Cosima – High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta
2007
The ESA mission Rosetta, launched on March 2nd, 2004, carries an instrument suite to the comet 67P/Churyumov-Gerasimenko. The COmetary Secondary Ion Mass Anaylzer – COSIMA – is one of three cometary dust analyzing instruments onboard Rosetta. COSIMA is based on the analytic measurement method of secondary ion mass spectrometry (SIMS). The experiment’s goal is in-situ analysis of the elemental composition (and isotopic composition of key elements) of cometary grains. The chemical characterization will include the main organic components, present homologous and functional groups, as well as the mineralogical and petrographical classification of the inorganic phases. All this analysis is closely related to the chemistry and history of the early solar system. COSIMA covers a mass range from 1 to 3500 amu with a mass resolution m/Δm @ 50% of 2000 at mass 100 amu. Cometary dust is collected on special, metal covered, targets, which are handled by a target manipulation unit. Once exposed to the cometary dust environment, the collected dust grains are located on the target by a microscopic camera. A pulsed primary indium ion beam (among other entities) releases secondary ions from the dust grains. These ions, either positive or negative, are selected and accelerated by electrical fields and travel a well-defined distance through a drift tube and an ion reflector. A microsphere plate with dedicated amplifier is used to detect the ions. The arrival times of the ions are digitized, and the mass spectra of the secondary ions are calculated from these time-of-flight spectra. Through the instrument commissioning, COSIMA took the very first SIMS spectra of the targets in space. COSIMA will be the first instrument applying the SIMS technique in-situ to cometary grain analysis as Rosetta approaches the comet 67P/Churyumov-Gerasimenko, after a long journey of 10 years, in 2014.
Journal Article
The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results
2007
The Grain Impact Analyser and Dust Accumulator (GIADA) onboard the ROSETTA mission to comet 67P/Churyumov–Gerasimenko is devoted to study the cometary dust environment. Thanks to the rendezvous configuration of the mission, GIADA will be plunged in the dust environment of the coma and will be able to explore dust flux evolution and grain dynamic properties with position and time. This will represent a unique opportunity to perform measurements on key parameters that no ground-based observation or fly-by mission is able to obtain and that no tail or coma model elaborated so far has been able to properly simulate. The coma and nucleus properties shall be, then, clarified with consequent improvement of models describing inner and outer coma evolution, but also of models about nucleus emission during different phases of its evolution. GIADA shall be capable to measure mass/size of single particles larger than about 15 μm together with momentum in the range 6.5 × 10−10 ÷ 4.0 × 10−4 kg m s−1 for velocities up to about 300 m s−1. For micron/submicron particles the cumulative mass shall be detected with sensitivity 10−10 g. These performances are suitable to provide a statistically relevant set of data about dust physical and dynamic properties in the dust environment expected for the target comet 67P/Churyumov–Gerasimenko. Pre-flight measurements and post-launch checkouts demonstrate that GIADA is behaving as expected according to the design specifications.
Journal Article
Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update
by
Stojic, A. N.
,
Hiesinger, H.
,
Stangarone, C.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Bepi Colombo (ESA)
2020
Launched onboard the BepiColombo Mercury Planetary Orbiter (MPO) in October 2018, the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) is on its way to planet Mercury. MERTIS consists of a push-broom IR-spectrometer (TIS) and a radiometer (TIR), which operate in the wavelength regions of 7-14 μm and 7-40 μm, respectively. This wavelength region is characterized by several diagnostic spectral signatures: the Christiansen feature (CF), Reststrahlen bands (RB), and the Transparency feature (TF), which will allow us to identify and map rock-forming silicates, sulfides as well as other minerals. Thus, the instrument is particularly well-suited to study the mineralogy and composition of the hermean surface at a spatial resolution of about 500 m globally and better than 500 m for approximately 5-10% of the surface. The instrument is fully functional onboard the BepiColombo spacecraft and exceeds all requirements (e.g., mass, power, performance). To prepare for the science phase at Mercury, the team developed an innovative operations plan to maximize the scientific output while at the same time saving spacecraft resources (e.g., data downlink). The upcoming fly-bys will be excellent opportunities to further test and adapt our software and operational procedures. In summary, the team is undertaking action at multiple levels, including performing a comprehensive suite of spectroscopic measurements in our laboratories on relevant analog materials, performing extensive spectral modeling, examining space weathering effects, and modeling the thermal behavior of the hermean surface.
Journal Article
Martian atmosphere as observed by VIRTIS-M on Rosetta spacecraft
by
Wolkenberg, P.
,
Neukum, G.
,
Tosi, F.
in
67P/Churyumov‐Gerasimenko
,
Air pollution
,
Air temperature
2010
The Rosetta spacecraft accomplished a flyby of Mars on its way to 67P/Churyumov‐Gerasimenko on 25 February 2007. In this paper we describe the measurements obtained by the M channel of the Visual and Infrared Thermal Imaging Spectrometer (VIRTIS‐M) and the first scientific results derived from their analysis. The broad spectral coverage of the VIRTIS‐M in the IR permitted the study of various phenomena occurring in the Martian atmosphere; observations were further exploited to achieve accurate absolute radiometric calibration. Nighttime data from the VIRTIS‐M constrain the air temperature profile in the lower atmosphere (5–30 km), using variations in CO2 opacity at 4.3 μm. A comparison of this data with the global circulation model (GCM) by Forget et al. (1999) shows a trend of slightly higher air temperature in the VIRTIS‐M retrievals; this is accompanied by the presence of moderate decreases (∼5 K) in large sections of the equatorial region. This is potentially related to the occurrence of water ice clouds. Daytime data from the VIRTIS‐M reveal CO2 non–local thermodynamic equilibrium emission in the high atmosphere. A mapping of emission intensity confirms its strict dependence on solar zenith angle. Additionally, devoted limb observations allowed the retrieval of vertical emission intensity profiles, indicating a peak around 105 km in southern tropical regions. Ozone content can be effectively monitored by the emission of O2 (a1Δg) at 1.27 μm. Retrieved emission intensity shows that polar regions are particularly rich in ozone. Aerosol scattering was observed in the 1–2.5 μm region above the night region above the night disk, suggesting the occurrence of very high noctilucent clouds.
Journal Article
The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS
2011
The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter⁻² kelvin⁻¹ second⁻⁰.⁵, comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.
Journal Article
The role of laboratory experiments in the characterisation of silicon-based cosmic material
by
Colangeli, L.
,
Fabian, D.
,
Guillois, O.
in
Astrophysics
,
Chemical reactions
,
Chemical Sciences
2003
Silicate grains in space have attracted recently a wide interest of astrophysicists due to the increasing amount and quality of observational data, especially thanks to the results obtained by the Infrared Space Observatory. The observations have shown that the presence of silicates is ubiquitous in space and that their properties vary with environmental characteristics. Silicates, together with carbon, are the principal components of solid matter in space. Since their formation, silicate grains cross many environments characterised by different physical and chemical conditions which can induce changes to their nature. Moreover, the transformations experienced in the interplay of silicate grains and the medium where they are dipped, are part of a series of processes which are the subject of possible changes in the nature of the space environment itself. Then, chemical and physical changes of silicate grains during their life play a key role in the chemical evolution of the entire Galaxy. The knowledge of silicate properties related to the conditions where they are found in space is strictly related to the study in the laboratory of the possible formation and transformation mechanisms they experience. The application of production and processing methods, capable to reproduce actual space conditions, together with the use of analytical techniques to investigate the nature of the material samples, form a subject of a complex laboratory experimental approach directed to the understanding of cosmic matter. The goal of the present paper is to review the experimental methods applied in various laboratories to the simulation and characterisation of cosmic silicate analogues. The paper describes also laboratory studies of the chemical reactions undergone and induced by silicate grains. The comparison of available laboratory results with observational data shows the essential constraints imposed by astronomical observations and, at the same time, indicates the most puzzling problems that deserve particular attention for the future. The outstanding open problems are reported and discussed. The final purpose of this paper is to provide an overview of the present stage of knowledge about silicates in space and to provide to the reader some indication of the future developments in the field.
Journal Article
Characterization of Cosmic Materials in the Laboratory
1999
One of the main objectives of modern astrophysics is the characterisation of properties and evolution of materials present in space. Production, processing and analysis of cosmic dust analogues in the laboratory represents a powerful tool to interpret astronomical observations and to contribute to the solution of puzzling problems which are so far unsolved. In the present paper we summarize recent results obtained in our laboratory on carbon-based and silicate materials able to simulate various types of cosmic grains. The laboratory data are applied to discuss the nature of spectral features observed in the interstellar medium and in comets.[PUBLICATION ABSTRACT]
Journal Article
Dust particle impacts during the Giotto encounter with comet Grigg–Skjellerup
1993
IN the European Space Agency's 1992 Giotto Extended Mission, the Dust Impact Detection System operated successfully during a fly-by that took the spacecraft within about 200 km of the nucleus of comet Grigg–Skjellerup. During the encounter, three meteoroid impacts were detected on Giotto's front shield. The particle masses were found to be lOO
+105
-50
µg, 2
+4
-1
µg and 20
+25
-10
µg, suggesting that the mass distribution of the cometary dust was dominated by larger particles. This is supported by the independent detection of a very large meteoroid (14
+40
-4
mg) by the Giotto Radio-Science Experiment, and is consistent with data over the same mass range from the 1986 encounter with comet Halley. The results indicate a higher rate of mass loss from the nucleus than previously thought, and hence a higher dust-to-gas mass ratio.
Journal Article