Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
65 result(s) for "Colella, Stefano"
Sort by:
Stylet cuticular gene-directed mutagenesis impairs the pea aphid vector capacity to transmit a plant virus
Aphids are major agricultural pests, notably because they transmit nearly 30% of known plant viruses, including non-circulative ones. They can be collected and dispersed rapidly among crops while aphids feed on infected plants. Most of these viruses are retained on receptors located on the cuticle of the stylet tip. The acrostyle, a cuticular micro-territory at the apex of aphid stylets, has been identified for its ability to retain the cauliflower mosaic virus (CaMV). The acrostyle displays cuticular proteins, known as stylins, with exposed domains accessible at the virus-vector interface. RNAi-mediated silencing of Stylin-01 designated this protein as the prime candidate receptor of CaMV. However, the results were incomplete due to the transient effect and highlighted the need for stable mutants to advance our knowledge and validate these putative virus receptors. Here, we characterized the phenotype of two pea aphid Stylin-01 mutant lines, the first generated with CRISPR/Cas9 in this hemipteran. We showed that Stylin-01 mutations significantly disrupt CaMV transmission and impair the acrostyle’s ability to bind the CaMV helper protein P2. Stylin-01 mutations also reshape the distribution of other stylins on the surface of mutant aphid stylets. In addition, Stylin-02, the putative ortholog of Stylin-01, is overexpressed in the mutant lines, pointing out a potential partial complementation of Stylin-01 in its structural role but not for virus transmission. In conclusion, this study, using the first stable aphid mutant lines, allows the characterization of the central role of Stylin-01 virus receptor in CaMV transmission.
DiCoExpress: a tool to process multifactorial RNAseq experiments from quality controls to co-expression analysis through differential analysis based on contrasts inside GLM models
Background RNAseq is nowadays the method of choice for transcriptome analysis. In the last decades, a high number of statistical methods, and associated bioinformatics tools, for RNAseq analysis were developed. More recently, statistical studies realised neutral comparison studies using benchmark datasets, shedding light on the most appropriate approaches for RNAseq data analysis. Results DiCoExpress is a script-based tool implemented in R that includes methods chosen based on their performance in neutral comparisons studies. DiCoExpress uses pre-existing R packages including FactoMineR, edgeR and coseq, to perform quality control, differential, and co-expression analysis of RNAseq data. Users can perform the full analysis, providing a mapped read expression data file and a file containing the information on the experimental design. Following the quality control step, the user can move on to the differential expression analysis performed using generalized linear models thanks to the automated contrast writing function. A co-expression analysis is implemented using the coseq package. Lists of differentially expressed genes and identified co-expression clusters are automatically analyzed for enrichment of annotations provided by the user. We used DiCoExpress to analyze a publicly available RNAseq dataset on the transcriptional response of Brassica napus L. to silicon treatment in plant roots and mature leaves. This dataset, including two biological factors and three replicates for each condition, allowed us to demonstrate in a tutorial all the features of DiCoExpress. Conclusions DiCoExpress is an R script-based tool allowing users to perform a full RNAseq analysis from quality controls to co-expression analysis through differential analysis based on contrasts inside generalized linear models. DiCoExpress focuses on the statistical modelling of gene expression according to the experimental design and facilitates the data analysis leading the biological interpretation of the results.
Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae
Fabeae legumes such as pea and faba bean form symbiotic nodules with a large diversity of soil Rhizobium leguminosarum symbiovar viciae (Rlv) bacteria. However, bacteria competitive to form root nodules (CFN) are generally not the most efficient to fix dinitrogen, resulting in a decrease in legume crop yields. Here, we investigate differential selection by host plants on the diversity of Rlv. A large collection of Rlv was collected by nodule trapping with pea and faba bean from soils at five European sites. Representative genomes were sequenced. In parallel, diversity and abundance of Rlv were estimated directly in these soils using metabarcoding. The CFN of isolates was measured with both legume hosts. Pea/faba bean CFN were associated to Rlv genomic regions. Variations of bacterial pea and/or faba bean CFN explained the differential abundance of Rlv genotypes in pea and faba bean nodules. No evidence was found for genetic association between CFN and variations in the core genome, but variations in specific regions of the nod locus, as well as in other plasmid loci, were associated with differences in CFN. These findings shed light on the genetic control of CFN in Rlv and emphasise the importance of host plants in controlling Rhizobium diversity.
Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis
Endosymbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Little is known about whether and how symbiotic cells are coordinated according to host physiology. Here, we use the nutritional symbiosis between the insect pest, Acyrthosiphon pisum, and its obligate symbiont, Buchnera aphidicola, as a model system. We have developed a novel approach for unculturable bacteria, based on flow cytometry, and used this method to estimate the absolute numbers of symbionts at key stages of aphid life. The endosymbiont population increases exponentially throughout nymphal development, showing a growing rate which has never been characterized by indirect molecular techniques. Using histology and imaging techniques, we have shown that the endosymbiont-bearing cells (bacteriocytes) increase significantly in number and size during the nymphal development, and clustering in the insect abdomen. Once adulthood is reached and the laying period has begun, the dynamics of symbiont and host cells is reversed: the number of endosymbionts decreases progressively and the bacteriocyte structure degenerates during insect aging. In summary, these results show a coordination of the cellular dynamics between bacteriocytes and primary symbionts and reveal a fine-tuning of aphid symbiotic cells to the nutritional demand imposed by the host physiology throughout development. Intracellular symbioses (endosymbioses) between prokaryotic and metazoan organisms play a central role in multicellular life, significantly impacting the evolution and shaping the ecology of countless species 1. In insects, which account for a great proportion of planet biodiversity, the exploitation of the metabolic capabilities of intra-cellular symbiotic bacteria (endosymbionts) enables the hosts to thrive on nutritionally unbalanced diets such as plant sap, grains, wood or vertebrate blood 2–4. The sustainability of these endosymbiotic relationships largely relies on the compartmentalization of bacterial endosymbionts into specialized host cells (or organs), called bac-teriocytes (or bacteriomes), whose functions are adapted to the tolerance and regulation of symbiotic populations 5,6. A detailed description of the interplay between bacteriocytes and endosymbionts across the host life cycle, and in response to an ever-changing environment, is expected to provide a better understanding of how microorganisms interact with eukaryotic cells, and, in turn, to contribute to the development of novel strategies for controlling pest and disease-vector insects. The relationship between aphids (Hemiptera: Aphididae) and the gamma-3-proteobacterium Buchnera aphidicola, represents the best-studied model among endosymbiotic associations. In the A. pisum/B. aphidicola
Genome-Wide Hypomethylation in Head and Neck Cancer Is More Pronounced in HPV-Negative Tumors and Is Associated with Genomic Instability
Loss of genome-wide methylation is a common feature of cancer, and the degree of hypomethylation has been correlated with genomic instability. Global methylation of repetitive elements possibly arose as a defense mechanism against parasitic DNA elements, including retrotransposons and viral pathogens. Given the alterations of global methylation in both viral infection and cancer, we examined genome-wide methylation levels in head and neck squamous cell carcinoma (HNSCC), a cancer causally associated with human papilloma virus (HPV). We assayed global hypomethylation levels in 26 HNSCC samples, compared with their matched normal adjacent tissue, using Pyrosequencing-based methylation assays for LINE repeats. In addition, we examined cell lines derived from a variety of solid tumors for LINE and SINE (Alu) repeats. The degree of LINE and Alu hypomethylation varied among different cancer cell lines. There was only moderate correlation between LINE and Alu methylation levels, with the range of variation in methylation levels being greater for the LINE elements. LINE hypomethylation was more pronounced in HPV-negative than in HPV-positive tumors. Moreover, genomic instability, as measured by genome-wide loss-of-heterozygosity (LOH) single nucleotide polymorphism (SNP) analysis, was greater in HNSCC samples with more pronounced LINE hypomethylation. Global hypomethylation was variable in HNSCC. Its correlation with both HPV status and degree of LOH as a surrogate for genomic instability may reflect alternative oncogenic pathways in HPV-positive versus HPV-negative tumors.
Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids
Phenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development.
Matrix-Assisted Laser Desorption/Ionisation, Time-of-Flight Mass Spectrometry in Genomics Research
The beginning of this millennium has seen dramatic advances in genomic research. Milestones such as the complete sequencing of the human genome and of many other species were achieved and complemented by the systematic discovery of variation at the single nucleotide (SNP) and whole segment (copy number polymorphism) level. Currently most genomics research efforts are concentrated on the production of whole genome functional annotations, as well as on mapping the epigenome by identifying the methylation status of CpGs, mainly in CpG islands, in different tissues. These recent advances have a major impact on the way genetic research is conducted and have accelerated the discovery of genetic factors contributing to disease. Technology was the critical driving force behind genomics projects: both the combination of Sanger sequencing with high-throughput capillary electrophoresis and the rapid advances in microarray technologies were keys to success. MALDI-TOF MS-based genome analysis represents a relative newcomer in this field. Can it establish itself as a long-term contributor to genetics research, or is it only suitable for niche areas and for laboratories with a passion for mass spectrometry? In this review, we will highlight the potential of MALDI-TOF MS-based tools for resequencing and for epigenetics research applications, as well as for classical complex genetic studies, allele quantification, and quantitative gene expression analysis. We will also identify the current limitations of this approach and attempt to place it in the context of other genome analysis technologies.
The transposable element-rich genome of the cereal pest Sitophilus oryzae
The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Altered Intra-Nuclear Organisation of Heterochromatin and Genes in ICF Syndrome
The ICF syndrome is a rare autosomal recessive disorder, the most common symptoms of which are immunodeficiency, facial anomalies and cytogenetic defects involving decondensation and instability of chromosome 1, 9 and 16 centromeric regions. ICF is also characterised by significant hypomethylation of the classical satellite DNA, the major constituent of the juxtacentromeric heterochromatin. Here we report the first attempt at analysing some of the defining genetic and epigenetic changes of this syndrome from a nuclear architecture perspective. In particular, we have compared in ICF (Type 1 and Type 2) and controls the large-scale organisation of chromosome 1 and 16 juxtacentromeric heterochromatic regions, their intra-nuclear positioning, and co-localisation with five specific genes (BTG2, CNN3, ID3, RGS1, F13A1), on which we have concurrently conducted expression and methylation analysis. Our investigations, carried out by a combination of molecular and cytological techniques, demonstrate the existence of specific and quantifiable differences in the genomic and nuclear organisation of the juxtacentromeric heterochromatin in ICF. DNA hypomethylation, previously reported to correlate with the decondensation of centromeric regions in metaphase described in these patients, appears also to correlate with the heterochromatin spatial configuration in interphase. Finally, our findings on the relative positioning of hypomethylated satellite sequences and abnormally expressed genes suggest a connection between disruption of long-range gene-heterochromatin associations and some of the changes in gene expression in ICF. Beyond its relevance to the ICF syndrome, by addressing fundamental principles of chromosome functional organisation within the cell nucleus, this work aims to contribute to the current debate on the epigenetic impact of nuclear architecture in development and disease.
Loss of Heterozygosity on Chromosome 10 Is More Extensive in Primary (De Novo) Than in Secondary Glioblastomas
Glioblastomas develop de novo (primary glioblastomas) or through progression from low-grade or anaplastic astrocytoma (secondary glioblastomas). There is increasing evidence that these glioblastoma subtypes develop through different genetic pathways. Primary glioblastomas are characterized by EGFR and MDM2 amplification/overexpression, PTEN mutations, and p16 deletions, whereas secondary glioblastomas frequently contain p53 mutations. Loss of heterozygosity (LOH) on chromosome 10 (LOH#10) is the most frequent genetic alteration in glioblastomas; the involvement of tumor suppressor genes, other than PTEN, has been suggested. We carried out deletion mappings on chromosome 10, using PCR-based microsatellite analysis. LOH#10 was detected at similar frequencies in primary (8/17; 47%) and secondary glioblastomas (7/13; 54%). The majority (88%) of primary glioblastomas with LOH#10 showed LOH at all informative markers, suggesting loss of the entire chromosome 10. In contrast, secondary glioblastomas with LOH#10 showed partial or complete loss of chromosome 10q but no loss of 10p. These results are in accordance with the view that LOH on 10q is a major factor in the evolution of glioblastoma multiform as the common phenotypic end point of both genetic pathways, whereas LOH on 10p is largely restricted to the primary (de novo) glioblastoma.