Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Colldén, Gustav"
Sort by:
Therapeutic Potential of Targeting the Ghrelin Pathway
by
Müller, Timo
,
Colldén, Gustav
,
Tschöp, Matthias
in
Animals
,
Anorexia
,
Anorexia Nervosa - drug therapy
2017
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Journal Article
Neonatal leptin antagonism improves metabolic programming of postnatally overnourished mice
2022
Background/ObjectivesAlteration of the perinatal nutritional environment is an important risk factor for the development of metabolic diseases in later life. The hormone leptin plays a critical role in growth and development. Previous studies reported that postnatal overnutrition increases leptin secretion during the pre-weaning period. However, a direct link between leptin, neonatal overnutrition, and lifelong metabolic regulation has not been investigated.MethodsWe used the small litter mouse model combined with neonatal leptin antagonist injections to examine whether attenuating leptin during early life improves lifelong metabolic regulation in postnatally overnourished mice.ResultsPostnatally overnourished mice displayed rapid weight gain during lactation and remained overweight as adults. These mice also showed increased adiposity and perturbations in glucose homeostasis in adulthood. Neonatal administration of a leptin antagonist normalized fat mass and insulin sensitivity in postnatally overnourished mice. These metabolic improvements were associated with enhanced sensitivity of hypothalamic neurons to leptin.ConclusionsEarly postnatal overnutrition causes metabolic alterations that can be permanently attenuated with the administration of a leptin antagonist during a restricted developmental window.
Journal Article
Neonatal ghrelin programs development of hypothalamic feeding circuits
by
Steculorum, Sophie M.
,
Lockie, Sarah
,
Croizier, Sophie
in
Adipocytes - metabolism
,
Adipocytes - pathology
,
Animals
2015
A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation.
Journal Article
Functional identity of hypothalamic melanocortin neurons depends on Tbx3
2019
Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in
Drosophila melanogaster
and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.
Hypothalamic melanocortin neurons control energy homoeostasis by modulating appetite. Here, the authors reveal a role for the transcription factor Tbx3 as a regulator of the peptidergic identity and function of immature and mature mouse melanocortin neurons.
Journal Article
Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis
2017
In contrast to previously reported findings, M2-like polarized macrophages are not a source of catecholamines and do not contribute to browning of the fat.
Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through β3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue. Recent studies have reported that alternative activation of macrophages in response to interleukin (IL)-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and that this activation provides an alternative source of locally produced catecholamines during the thermogenic process. Here we report that the deletion of
Th
in hematopoietic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow–derived macrophages did not release NE in response to stimulation with IL-4, and conditioned media from IL-4-stimulated macrophages failed to induce expression of thermogenic genes, such as uncoupling protein 1 (
Ucp1
), in adipocytes cultured with the conditioned media. Furthermore, chronic treatment with IL-4 failed to increase energy expenditure in wild-type,
Ucp1
−/−
and interleukin-4 receptor-α double-negative (
Il4ra
−/−
) mice. In agreement with these findings, adipose-tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines, and hence, are not likely to have a direct role in adipocyte metabolism or adaptive thermogenesis.
Journal Article
Inceptor counteracts insulin signalling in β-cells to control glycaemia
2021
Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic β-cells causes overt diabetes in mice; thus, therapies that sensitize β-cells to insulin may protect patients with diabetes against β-cell failure
1
–
3
. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse β-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene
Iir
). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R
4
, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)
5
. Knockout mice that lack inceptor (
Iir
−/−
) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from
Iir
−/−
mice showed an increase in the activation of INSR–IGF1R in
Iir
−/−
pancreatic tissue, resulting in an increase in the proliferation and mass of β-cells. Similarly, inducible β-cell-specific
Iir
−/−
knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR–IGF1R and increased proliferation of β-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR–IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR–IGF1R in β-cells. Together, our findings show that inceptor shields insulin-producing β-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR–IGF1R sensitization and diabetes therapy.
The insulin inhibitory receptor (inceptor) is identified as a negative regulator of insulin and IGF1 signalling that could be targeted for β-cell regeneration in treatments for diabetes.
Journal Article
Author Correction: Inceptor counteracts insulin signalling in β-cells to control glycaemia
2021
A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03347-z.
Journal Article
GLP-1-mediated delivery of tesaglitazar improves obesity and glucose metabolism in male mice
2022
Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography–mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.
A conjugate drug consisting of GLP-1 receptor agonist and the PPARɑ/ɣ dual-agonist tesaglitazar is shown to have superior anti-diabetic effects than monotherapy.
Journal Article
Global, neuronal or β cell-specific deletion of inceptor improves glucose homeostasis in male mice with diet-induced obesity
by
Liskiewicz, Arkadiusz
,
Krahmer, Natalie
,
Novikoff, Aaron
in
631/443/319
,
692/163/2743
,
692/163/2743/393
2024
Insulin resistance is an early complication of diet-induced obesity (DIO)
1
, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive β cell hypertrophy and development of type 2 diabetes
2
. Insulin not only signals via the insulin receptor (INSR), but also promotes β cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)
3
–
6
. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization
7
. But, although β cell-specific loss of inceptor improves β cell function in lean mice
7
, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic β cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the β cells, improves glucose homeostasis by enhancing β cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling.
In male mice with diet-induced obesity, deletion of insulin inhibitory receptor (inceptor) in the whole body, in the brain and in pancreatic β cells improves glucose homeostasis, underlining a role of inceptor in regulating glucose homeostasis in the brain and pancreas.
Journal Article
Neonatal ghrelin programs development of hypothalamic feeding circuits
by
Bouret, Sebastien G
,
Lockie, Sarah
,
Steculorum, Sophie M
in
Food and nutrition
,
Ghrelin
,
Infants (Newborn)
2015
A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation.
Journal Article