Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
284
result(s) for
"Collins, Patrick L."
Sort by:
DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner
2020
Efficient repair of DNA double-strand breaks (DSBs) requires a coordinated DNA Damage Response (DDR), which includes phosphorylation of histone H2Ax, forming γH2Ax. This histone modification spreads beyond the DSB into neighboring chromatin, generating a DDR platform that protects against end disassociation and degradation, minimizing chromosomal rearrangements. However, mechanisms that determine the breadth and intensity of γH2Ax domains remain unclear. Here, we show that chromosomal contacts of a DSB site are the primary determinants for γH2Ax landscapes. DSBs that disrupt a topological border permit extension of γH2Ax domains into both adjacent compartments. In contrast, DSBs near a border produce highly asymmetric DDR platforms, with γH2Ax nearly absent from one broken end. Collectively, our findings lend insights into a basic DNA repair mechanism and how the precise location of a DSB may influence genome integrity.
Formation of γH2Ax serves as a checkpoint for double-strand break (DSB) repair pathways. Here the authors reveal via integrated chromatin analysis that γH2Ax domains are established by chromosomal contacts with the DSB site.
Journal Article
BAP1 promotes osteoclast function by metabolic reprogramming
2023
Treatment of osteoporosis commonly diminishes osteoclast number which suppresses bone formation thus compromising fracture prevention. Bone formation is not suppressed, however, when bone degradation is reduced by retarding osteoclast functional resorptive capacity, rather than differentiation. We find deletion of deubiquitinase,
BRCA1-associated protein 1 (Bap1)
, in myeloid cells (
Bap1
∆LysM
), arrests osteoclast function but not formation.
Bap1
∆LysM
osteoclasts fail to organize their cytoskeleton which is essential for bone degradation consequently increasing bone mass in both male and female mice. The deubiquitinase activity of BAP1 modifies osteoclast function by metabolic reprogramming.
Bap1
deficient osteoclast upregulate the cystine transporter,
Slc7a11
, by enhanced H2Aub occupancy of its promoter. SLC7A11 controls cellular reactive oxygen species levels and redirects the mitochondrial metabolites away from the tricarboxylic acid cycle, both being necessary for osteoclast function. Thus, in osteoclasts BAP1 appears to regulate the epigenetic-metabolic axis and is a potential target to reduce bone degradation while maintaining osteogenesis in osteoporotic patients.
Here, the authors demonstrate that BRCA1-associated protein 1 (Bap1) regulates osteoclast’s capacity to degrade bone. Reprogramming of epigenetic-metabolic axis upon Bap1 loss inhibits bone degradation, preserving bone mass, making it a potential therapeutic target for osteoporosis.
Journal Article
The histone methyltransferase SETDB1 represses endogenous and exogenous retroviruses in B lymphocytes
2015
Genome stability relies on epigenetic mechanisms that enforce repression of endogenous retroviruses (ERVs). Current evidence suggests that distinct chromatin-based mechanisms repress ERVs in cells of embryonic origin (histone methylation dominant) vs. more differentiated cells (DNA methylation dominant). However, the latter aspect of this model has not been tested. Remarkably, and in contrast to the prevailing model, we find that repressive histone methylation catalyzed by the enzyme SETDB1 is critical for suppression of specific ERV families and exogenous retroviruses in committed B-lineage cells from adult mice. The profile of ERV activation in SETDB1-deficient B cells is distinct from that observed in corresponding embryonic tissues, despite the loss of repressive chromatin modifications at all ERVs. We provide evidence that, on loss of SETDB1, ERVs are activated in a lineage-specific manner depending on the set of transcription factors available to target proviral regulatory elements. These findings have important implications for genome stability in somatic cells, as well as the interface between epigenetic repression and viral latency.
Journal Article
Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis
2024
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8 T cell responses mediate disease. While these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8 T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8 T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce reactive oxygen species and ultimately increased the hypoxic state and granzyme B expression in CD8 T cells. Importantly, lesions from cutaneous leishmaniasis patients exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8 T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as other inflammatory skin diseases where cytolytic CD8 T cells contribute to pathogenesis.
Journal Article
Aiolos represses CD4+ T cell cytotoxic programming via reciprocal regulation of TFH transcription factors and IL-2 sensitivity
2023
During intracellular infection, T follicular helper (T
FH
) and T helper 1 (T
H
1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8
+
T cells. The mechanisms underlying differentiation of these populations are incompletely understood. Here, we identify the transcription factor Aiolos as a reciprocal regulator of T
FH
and CD4-CTL programming. We find that Aiolos deficiency results in downregulation of key T
FH
transcription factors, and consequently reduced T
FH
differentiation and antibody production, during influenza virus infection. Conversely, CD4-CTL programming is elevated, including enhanced Eomes and cytolytic molecule expression. We further demonstrate that Aiolos deficiency allows for enhanced IL-2 sensitivity and increased STAT5 association with CD4-CTL gene targets, including Eomes, effector molecules, and IL2Ra. Thus, our collective findings identify Aiolos as a pivotal regulator of CD4-CTL and T
FH
programming and highlight its potential as a target for manipulating CD4
+
T cell responses.
The regulation and direction of CD4
+
T cells into phenotypic and functional lineages is coordinated by a complex set of mechanisms. Here the authors show a role for Aiolos as a regulator of the CD4
+
cytotoxic and T follicular helper lineages.
Journal Article
Barrier-to-Autointegration Factor 1 Protects against a Basal cGAS-STING Response
2020
Although the interferon (IFN) signaling pathway is a key host mechanism to restrict infection of a diverse range of viral pathogens, its unrestrained activity either at baseline or in the context of an immune response can result in host cell damage and injury. Here, we used a genome-wide CRISPR-Cas9 screen and identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1) as a modulator of basal cell-intrinsic immunity. A loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline, which triggered IFN-stimulated gene expression via a cGAS-STING-IRF3 axis that did not require type I IFN or STAT1 signaling. Our experiments define a regulatory network in which Banf1 limits basal inflammation by preventing self DNA accumulation in the cytosol. Although the pathogen recognition receptor pathways that activate cell-intrinsic antiviral responses are well delineated, less is known about how the host regulates this response to prevent sustained signaling and possible immune-mediated damage. Using a genome-wide CRISPR-Cas9 screening approach to identify host factors that modulate interferon-stimulated gene (ISG) expression, we identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1), a previously described inhibitor of retrovirus integration, as a modulator of basal cell-intrinsic immunity. Ablation of Banf1 by gene editing resulted in chromatin activation near host defense genes with associated increased expression of ISGs, including Oas2 , Rsad2 (viperin), Ifit1 , and ISG15 . The phenotype in Banf1-deficient cells occurred through a cGAS-, STING-, and IRF3-dependent signaling axis, was associated with reduced infection of RNA and DNA viruses, and was reversed in Banf1 complemented cells. Confocal microscopy and biochemical studies revealed that a loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline. Our study identifies an undescribed role for Banf1 in regulating the levels of cytoplasmic DNA and cGAS-dependent ISG homeostasis and suggests possible therapeutic directions for promoting or inhibiting cell-intrinsic innate immune responses. IMPORTANCE Although the interferon (IFN) signaling pathway is a key host mechanism to restrict infection of a diverse range of viral pathogens, its unrestrained activity either at baseline or in the context of an immune response can result in host cell damage and injury. Here, we used a genome-wide CRISPR-Cas9 screen and identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1) as a modulator of basal cell-intrinsic immunity. A loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline, which triggered IFN-stimulated gene expression via a cGAS-STING-IRF3 axis that did not require type I IFN or STAT1 signaling. Our experiments define a regulatory network in which Banf1 limits basal inflammation by preventing self DNA accumulation in the cytosol.
Journal Article
Cerebral Malaria Is Regulated by Host-Mediated Changes in Plasmodium Gene Expression
by
Sturdevant, Daniel
,
Collins, Patrick L.
,
Miller, Louis H.
in
Anemia
,
Animals
,
Blood parasites
2023
Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Cerebral malaria (CM), the deadliest complication of Plasmodium infection, is a complex and unpredictable disease. However, our understanding of the host and parasite factors that cause CM is limited. Using a mouse model of CM, experimental CM (ECM), we performed a three-way comparison between ECM-susceptible C57BL/6 mice infected with ECM-causing Plasmodium ANKA parasites [ANKA (C57BL/6) ], ECM-resistant BALB/c mice infected with Plasmodium ANKA [ANKA (BALB/c) ], and C57BL/6 mice infected with Plasmodium NK65 that does not cause ECM [NK65 (C57BL/6) ]. All ANKA (C57BL/6) mice developed CM. In contrast, in ANKA (BALB/c) and NK65 (C57BL/6) , infections do not result in CM and proceed similarly in terms of parasite growth, disease course, and host immune response. However, parasite gene expression in ANKA (BALB/c) was remarkably different than that in ANKA (C57BL/6) but similar to the gene expression in NK65 (C57BL/6) . Thus, Plasmodium ANKA has an ECM-specific gene expression profile that is activated only in susceptible hosts, providing evidence that the host has a critical influence on the outcome of infection. IMPORTANCE Hundreds of thousands of lives are lost each year due to the brain damage caused by malaria disease. The overwhelming majority of these deaths occur in young children living in sub-Saharan Africa. Thus far, there are no vaccines against this deadly disease, and we still do not know why fatal brain damage occurs in some children while others have milder, self-limiting disease progression. Our research provides an important clue to this problem. Here, we showed that the genetic background of the host has an important role in determining the course and the outcome of the disease. Our research also identified parasite molecules that can potentially be targeted in vaccination and therapy approaches.
Journal Article
Deletion of Glycogen Synthase Kinase 3 Beta Reprograms NK Cell Metabolism
by
Thakkar, Aarohi
,
Collins, Patrick L.
,
Naeimi Kararoudi, Meisam
in
Acute myeloid leukemia
,
Antibodies
,
B cells
2023
Loss of cytotoxicity and defective metabolism are linked to glycogen synthase kinase 3 beta (GSK3β) overexpression in natural killer (NK) cells from patients with acute myeloid leukemia or from healthy donors after expansion ex vivo with IL-15. Drug inhibition of GSK3β in these NK cells improves their maturation and cytotoxic activity, but the mechanisms of GSK3β-mediated dysfunction have not been well studied. Here, we show that expansion of NK cells with feeder cells expressing membrane-bound IL-21 maintained normal GSK3β levels, allowing us to study GSK3β function using CRISPR gene editing. We deleted GSK3B and expanded paired-donor knockout and wild-type (WT) NK cells and then assessed transcriptional and functional alterations induced by loss of GSK3β. Surprisingly, our data showed that deletion of GSK3B did not alter cytotoxicity, cytokine production, or maturation (as determined by CD57 expression). However, GSK3B-KO cells demonstrated significant changes in expression of genes related to rRNA processing, cell proliferation, and metabolic function, suggesting possible metabolic reprogramming. Next, we found that key genes downregulated in GSK3B-KO NK cells were upregulated in GSK3β-overexpressing NK cells from AML patients, confirming this correlation in a clinical setting. Lastly, we measured cellular energetics and observed that GSK3B-KO NK cells exhibited 150% higher spare respiratory capacity, a marker of metabolic fitness. These findings suggest a role for GSK3β in regulating NK cell metabolism.
Journal Article
Novel oral adjuvant to enhance cytotoxic memory like NK cell responses in HIV vaccine platform
by
Alles, Mario
,
Gunasena, Manuja
,
Isckarus, Christina
in
692/308
,
Acquired immune deficiency syndrome
,
Adjuvants
2025
Natural killer (NK) cell-driven effector mechanisms, such as antibody-dependent cell-mediated cytotoxicity, emerged as a secondary correlate of protection in the RV144 HIV vaccine clinical trial, the only vaccine thus far demonstrating some efficacy in human trials. Therefore, leveraging NK cells with enhanced cytotoxic effector responses may bolster vaccine-induced protection against HIV. Here, we investigated the effect of orally administering indole-3-carbinol (I3C), an aryl hydrocarbon receptor (AHR) agonist, as an adjuvant to an RV144-like vaccine platform in a mouse model. We demonstrate the expansion of KLRG1-expressing NK cells induced by the vaccine together with I3C. This NK cell subset exhibited enhanced vaccine antigen-specific cytotoxic memory-like features. Our study underscores the potential of incorporating I3C as an oral adjuvant to HIV vaccine platforms to enhance antigen-specific cytotoxicity of NK cells against HIV-infected cells. This approach may contribute to enhancing the protective efficacy of HIV preventive vaccines against HIV acquisition.
Journal Article
Epigenetic Activation and Silencing of the Gene that Encodes IFN-γ
by
Henderson, Melodie A.
,
Chang, Shaojing
,
Collins, Patrick L.
in
Chromatin
,
Conformation
,
Cytokines
2013
Transcriptional activation and repression of genes that are developmentally regulated or exhibit cell-type specific expression patterns is largely achieved by modifying the chromatin template at a gene locus. Complex formation of stable epigenetic histone marks, loss or gain of DNA methylation, alterations in chromosome conformation, and specific utilization of both proximal and distal transcriptional enhancers and repressors all contribute to this process. In addition, long non-coding RNAs are a new species of regulatory RNAs that either positively or negatively regulate transcription of target gene loci. IFN-γ is a pro-inflammatory cytokine with critical functions in both innate and adaptive arms of the immune system. This review focuses on our current understanding of how the chromatin template is modified at the IFNG locus during developmental processes leading to its transcriptional activation and silencing.
Journal Article