Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,169 result(s) for "Collins, William J."
Sort by:
Critical role of water in the formation of continental crust
Continental arcs are the sites of production of continental crust, but the origin of these magmatic systems is not well understood. Although a number of processes have been suggested to be important, the role of water migrating from slab to surface during subduction has been underappreciated. Directly below the Moho, hot (approximately 1,100 °C), hydrous basaltic magmas fractionate as they cool to the regional geotherm at 750 to 800 °C, ultimately solidifying as mafic underplates. Cooling and fractionation cause water to exsolve and ascend, triggering fluid-fluxed melting of overlying mafic underplates and other crust. Melting of prior mafic underplates buffers temperatures and generates the voluminous, juvenile low-K magmas of Cordilleran batholiths. These granitoid magmas comprise a low-temperature slurry of melt and residue, and recrystallize into silicic mush during adiabatic ascent. Such hydrous mushes are intermittently infused by hotter, more mafic magmas, which hybridize and facilitate ascent and, potentially, eruption. Fluid-fluxed melting overcomes many of the general petrological and geochemical problems associated with models dominated by fractional crystallization. The role of water during repeated episodes of mafic underplating is critical to generate the juvenile granitoid infrastructure of the continents.Migration of water from the slab to the surface during subduction is highlighted as a key process in the formation of continental crust.
Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales
Reducing CO2 emissions through a shift from coal to natural gas power plants is a key strategy to support pathways for climate stabilization. However, methane leakage in the natural gas supply chain and emissions of a variety of climate forcers call the net benefits of this transition into question. Here, we integrated a life cycle inventory model with multiple global and regional emission metrics and investigated the impacts of representative coal and gas power plants in China, Germany, India and the United States. We found that the coal-to-gas shift is consistent with climate stabilization objectives for the next 50–100 years. Our finding is robust under a range of leakage rates and uncertainties in emissions data and metrics. It becomes conditional to the leakage rate in some locations only if we employ a set of metrics that essentially focus on short-term effects. Our case for the coal-to-gas shift is stronger than previously found, reinforcing the support for coal phase-out.The benefits of using natural gas as a bridge fuel are often called into question. A coal-to-gas shift in China, Germany, India and the United States is broadly consistent with climate stabilization goals in the Paris Agreement, except when metrics emphasizing very short-term outcomes are used.
AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and their climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.
Land-Use Emissions Play a Critical Role in Land Based Mitigation for Paris Climate Targets
Scenarios that limit global warming to below 2 degrees Centigrade by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 degrees Centigrade climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS.
Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP
We analyse historical (1850–2014) atmospheric hydroxyl (OH) and methane lifetime data from Coupled Model Intercomparison Project Phase 6 (CMIP6)/Aerosols and Chemistry Model Intercomparison Project (AerChemMIP) simulations. Tropospheric OH changed little from 1850 up to around 1980, then increased by around 9 % up to 2014, with an associated reduction in methane lifetime. The model-derived OH trends from 1980 to 2005 are broadly consistent with trends estimated by several studies that infer OH from inversions of methyl chloroform and associated measurements; most inversion studies indicate decreases in OH since 2005. However, the model results fall within observational uncertainty ranges. The upward trend in modelled OH since 1980 was mainly driven by changes in anthropogenic near-term climate forcer emissions (increases in anthropogenic nitrogen oxides and decreases in CO). Increases in halocarbon emissions since 1950 have made a small contribution to the increase in OH, whilst increases in aerosol-related emissions have slightly reduced OH. Halocarbon emissions have dramatically reduced the stratospheric methane lifetime by about 15 %–40 %; most previous studies assumed a fixed stratospheric lifetime. Whilst the main driver of atmospheric methane increases since 1850 is emissions of methane itself, increased ozone precursor emissions have significantly modulated (in general reduced) methane trends. Halocarbon and aerosol emissions are found to have relatively small contributions to methane trends. These experiments do not isolate the effects of climate change on OH and methane evolution; however, we calculate residual terms that are due to the combined effects of climate change and non-linear interactions between drivers. These residual terms indicate that non-linear interactions are important and differ between the two methodologies we use for quantifying OH and methane drivers. All these factors need to be considered in order to fully explain OH and methane trends since 1850; these factors will also be important for future trends.
COVID-19 lockdown emission reductions have the potential to explain over half of the coincident increase in global atmospheric methane
Compared with 2019, measurements of the global growth rate of background (marine air) atmospheric methane rose by 5.3 ppb yr−1 in 2020, reaching 15.0 ppb yr−1. Global atmospheric chemistry models have previously shown that reductions in nitrogen oxide (NOx) emissions reduce levels of the hydroxyl radical (OH) and lengthen the methane lifetime. Acting in the opposite sense, reductions in carbon monoxide (CO) and non-methane volatile organic compound (NMVOC) emissions increase OH and shorten methane's lifetime. Using estimates of NOx, CO, and NMVOC emission reductions associated with COVID-19 lockdowns around the world in 2020 as well as model-derived regional and aviation sensitivities of methane to these emissions, we find that NOx emission reductions led to a 4.8 (3.8 to 5.8) ppb yr−1 increase in the global methane growth rate. Reductions in CO and NMVOC emissions partly counteracted this, changing (reducing) the methane growth rate by −1.4 (−1.1 to −1.7) ppb yr−1 (CO) and −0.5 (−0.1 to −0.9) ppb yr−1 (NMVOC), yielding a net increase of 2.9 (1.7 to 4.0) ppb yr−1. Uncertainties refer to ±1 standard deviation model ranges in sensitivities. Whilst changes in anthropogenic emissions related to COVID-19 lockdowns are probably not the only important factor that influenced methane during 2020, these results indicate that they have had a large impact and that the net effect of NOx, CO, and NMVOC emission changes can explain over half of the observed 2020 methane changes. Large uncertainties remain in both emission changes during the lockdowns and methane's response to them; nevertheless, this analysis suggests that further research into how the atmospheric composition changed over the lockdown periods will help us to interpret past methane changes and to constrain future methane projections.
Stable climate metrics for emissions of short and long-lived species—combining steps and pulses
Multi-gas climate agreements rely on a methodology (widely referred to as 'metrics') to place emissions of different gases on a CO2-equivalent scale. There has been an ongoing debate on the extent to which existing metrics serve current climate policy. Endpoint metrics (such as global temperature change potential GTP) are the most closely related to policy goals based on temperature limits (such as Article 2 of the Paris Agreement). However, for short-lived climate forcers (SLCFs), endpoint metrics vary strongly with time horizon making them difficult to apply in practical situations. We show how combining endpoint metrics for a step change in SLCF emissions with a pulse emission of CO2 leads to an endpoint metric that only varies slowly over time horizons of interest. We therefore suggest that these combined step-pulse metrics (denoted combined global warming potential CGWP and combined global temperature change potential CGTP) can be a useful way to include short and long-lived species in the same basket in policy applications—this assumes a single basket approach is preferred by policy makers. The advantage of a combined step-pulse metric for SLCFs is that for species with a lifetime less than 20 years a single time horizon of around 75 years can cover the range of timescales appropriate to the Paris Agreement. These metrics build on recent work using the traditional global warming potential (GWP) metric in a new way, called GWP*. We show how the GWP* relates to CGWP and CGTP and that it systematically underestimates the temperature effects of SLCFs by up to 20%. These step-pulse metrics are all more appropriate than the conventional GWP for comparing the relative contributions of different species to future temperature targets and for SLCFs they are much less dependent on time horizon than GTP.
Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks
Global methane emissions from natural wetlands and carbon release from permafrost thaw have a positive feedback on climate, yet are not represented in most state-of-the-art climate models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, enhancing the combined feedback strength. We present simulations with an inverted intermediate complexity climate model, which follows prescribed global warming pathways to stabilization at 1.5 or 2.0 °C above pre-industrial levels by the year 2100, and which incorporates a state-of-the-art global land surface model with updated descriptions of wetland and permafrost carbon release. We demonstrate that the climate feedbacks from those two processes are substantial. Specifically, permissible anthropogenic fossil fuel CO2 emission budgets are reduced by 9–15% (25–38 GtC) for stabilization at 1.5 °C, and 6–10% (33–52 GtC) for 2.0 °C stabilization. In our simulations these feedback processes respond more quickly at temperatures below 1.5 °C, and the differences between the 1.5 and 2 °C targets are disproportionately small. This key finding holds for transient emission pathways to 2100 and does not account for longer-term implications of these feedback processes. We conclude that natural feedback processes from wetlands and permafrost must be considered in assessments of transient emission pathways to limit global warming.
Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change
Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr−1 due to ozone and 2200 (−350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.
Increased importance of methane reduction for a 1.5 degree target
To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the transient climate response to emissions. We show that plausible levels of methane (CH4) mitigation can make a substantial difference to the feasibility of achieving the Paris climate targets through increasing the allowable carbon emissions. This benefit is enhanced by the indirect effects of CH4 on ozone (O3). Here the differing effects of CH4 and CO2 on land carbon storage, including the effects of surface O3, lead to an additional increase in the allowable carbon emissions with CH4 mitigation. We find a simple robust relationship between the change in the 2100 CH4 concentration and the extra allowable cumulative carbon emissions between now and 2100 (0.27 ± 0.05 GtC per ppb CH4). This relationship is independent of modelled climate sensitivity and precise temperature target, although later mitigation of CH4 reduces its value and thus methane reduction effectiveness. Up to 12% of this increase in allowable emissions is due to the effect of surface ozone. We conclude early mitigation of CH4 emissions would significantly increase the feasibility of stabilising global warming below 1.5 °C, alongside having co-benefits for human and ecosystem health.