Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
568
result(s) for
"Colonna, Marco"
Sort by:
TREM2 variants: new keys to decipher Alzheimer disease pathogenesis
2016
A series of genetic studies has implicated the microglial immune receptor TREM2 in the pathogenesis of Alzheimer disease (AD). Here, Colonna and Wang describe recent studies that have begun to unpick the mechanisms by which TREM2 is involved in AD and discuss unanswered questions in the field.
Genome-wide association studies have identified rare variants of the gene that encodes triggering receptor expressed on myeloid cells 2 (TREM2) — an immune receptor that is found in brain microglia — as risk factors for non-familial Alzheimer disease (AD). Furthermore, animal studies have indicated that microglia have an important role in the brain response to amyloid-β (Aβ) plaques and that TREM2 variants may have an impact on such a function. We discuss how TREM2 may control the microglial response to Aβ and its impact on microglial senescence, as well as the interaction of TREM2 with other molecules that are encoded by gene variants associated with AD and the hypothetical consequences of the cleavage of TREM2 from the cell surface.
Journal Article
The identity and function of microglia in neurodegeneration
2018
The predominant type of immune cell in the brain is the microglia, a type of tissue-resident macrophage. In a variety of neurodegenerative settings, microglia alter their transcriptional profile, morphology and function in similar ways; thus, these activated cells have been called ‘degeneration- or disease-associated microglia’ (DAM). These activated microglia can perform different functions and exert both positive effects and negative effects in different mouse disease models. In humans, mutations in genes expressed in microglia are linked to various neurodegenerative diseases. Here we provide an overview of the common microglial response to neurodegeneration and key contributing pathways; delineate the multifaceted functions of activated microglia spanning various diseases; and discuss insights from the study of human disease-associated genes. We argue that strong evidence from both mouse models and human genetics causally links the function of activated microglia to neurodegeneration.
Song and Colonna provide an overview of the common microglial response to neurodegeneration and discuss insights from mouse models and the study of human disease-associated genes.
Journal Article
The Natural Cytotoxicity Receptors in Health and Disease
by
Martin, Claudia Jane
,
Barrow, Alexander David
,
Colonna, Marco
in
Cell recognition
,
Chromosomes
,
Cytotoxicity
2019
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Journal Article
Innate Lymphoid Cells in Mucosal Immunity
2019
Innate lymphoid cells (ILCs) are innate counterparts of T cells that contribute to immune responses by secreting effector cytokines and regulating the functions of other innate and adaptive immune cells. ILCs carry out some unique functions but share some tasks with T cells. ILCs are present in lymphoid and non-lymphoid organs and are particularly abundant at the mucosal barriers, where they are exposed to allergens, commensal microbes, and pathogens. The impact of ILCs in mucosal immune responses has been extensively investigated in the gastrointestinal and respiratory tracts, as well as in the oral cavity. Here we review the state-of-the-art knowledge of ILC functions in infections, allergy and autoimmune disorders of the mucosal barriers.
Journal Article
The biology of TREM receptors
2023
Triggering receptors expressed on myeloid cells (TREMs) encompass a family of cell-surface receptors chiefly expressed by granulocytes, monocytes and tissue macrophages. These receptors have been implicated in inflammation, neurodegenerative diseases, bone remodelling, metabolic syndrome, atherosclerosis and cancer. Here, I review the structure, ligands, signalling modes and functions of TREMs in humans and mice and discuss the challenges that remain in understanding TREM biology.In this Review, Marco Colonna provides a comprehensive summary of the triggering receptor expressed on myeloid cells (TREM) family of receptors. TREMs are important for modulating signalling in myeloid cells and have now been implicated in many different disease settings, including inflammatory diseases, autoimmunity, neurodegeneration and cancer.
Journal Article
TREM2 dependent and independent functions of microglia in Alzheimer’s disease
by
Hou, Jinchao
,
Chen, Yun
,
Grajales-Reyes, Gary
in
Advertising executives
,
Alzheimer Disease - pathology
,
Alzheimer's disease
2022
Microglia are central players in brain innate immunity and have been the subject of extensive research in Alzheimer’s disease (AD). In this review, we aim to summarize the genetic and functional discoveries that have advanced our understanding of microglia reactivity to AD pathology. Given the heightened AD risk posed by rare variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2), we will focus on the studies addressing the impact of this receptor on microglia responses to amyloid plaques, tauopathy and demyelination pathologies in mouse and human. Finally, we will discuss the implications of recent discoveries on microglia and TREM2 biology on potential therapeutic strategies for AD.
Journal Article
Innate lymphoid cell function in the context of adaptive immunity
2016
The redundant or specialized roles of innate lymphoid cells (ILCs) relative to those of T cells
in vivo
remain hard to delineate experimentally. Bando and Colonna review the current understanding of the specialized
in vivo
functions of ILCs and discuss the genetic mouse models used to assess the contributions of ILCs versus those of T cells.
The redundant or specialized roles of innate lymphoid cells (ILCs) relative to those of T cells
in vivo
remain hard to delineate experimentally. Bando and Colonna review the current understanding of the specialized
in vivo
functions of ILCs and discuss the genetic mouse models used to assess the contributions of ILCs versus those of T cells.
Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized
in vivo
functions of ILCs.
Journal Article
Innate lymphoid cells: A new paradigm in immunology
2015
For years, scientists divided the immune system into two arms: innate and adaptive. The cell types involved in the two arms differ in specificity and in how quickly they respond to infections. More recently, immunologists discovered a family of immune cells termed “innate lymphoid cells,” which straddle these two arms. Eberl
et al.
review current understanding of innate lymphoid cells. Like innate immune cells, they respond to infection quickly and do not express antigen receptors; however, they secrete a similar suite of inflammatory mediators as T lymphocytes. Better understanding of the processes regulating these cells may allow for their therapeutic manipulation.
Science
, this issue
10.1126/science.aaa6566
A growing family of immune cells reacts promptly to signals from infected or injured tissues and tailors the immune response.
Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex cross-talk between microenvironment, ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed in order to regulate or enhance immune responses in disease prevention and therapy.
Journal Article
Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity
by
Otero, Karel
,
Cella, Marina
,
Colonna, Marco
in
Antigen presenting cells
,
B lymphocytes
,
Biological Sciences
2010
Natural killer-22 (NK-22) cells are a human NK cell subset situated in mucosal-associated lymphoid tissues that specialize in IL-22 secretion in response to IL-23. Here we investigated the cytokine requirements for NK-22 cell expansion. IL-7 maintained the sur-vival of NK-22 cells and IL-22 production in response to IL-23 but was insufficient to induce robust expansion. Proliferation of NK-22 cells was increased markedly by adding either IL-1β or IL-2 to IL-7 and was even stronger in the presence of IL-1β plus IL-2. In contrast to IL-7, continuous culture in IL-1β and IL-2 modified NK-22 cytokine profiles. IL-1β promoted constitutive IL-22 secretion rather than acute IL-22 production in response to IL-23 and induced IL-17 in some cells. IL-2 reduced secretion of IL-22 and IL-17, increasing production of IFN-γ and leukemia inhibitory factor. Functional deviation toward IFN-γ production also was induced by continuous culture in IL-23. These results demonstrate the functional plasticity of NK-22 cells, which may allow flexible responses to different pathogens. Finally, we found that NK-22 cells released the B-cell survival factor, B-cell activating factor belonging to the TNF family (BAFF), suggesting a potential role of NK-22 cells in promoting B-cell-mediated mucosal immunity.
Journal Article
TREM2 sustains microglial expansion during aging and response to demyelination
by
Gilfillan, Susan
,
Colonna, Marco
,
Poliani, Pietro Luigi
in
Aging
,
Aging - metabolism
,
Alzheimer's disease
2015
Microglia contribute to development, homeostasis, and immunity of the CNS. Like other tissue-resident macrophage populations, microglia express the surface receptor triggering receptor expressed on myeloid cells 2 (TREM2), which binds polyanions, such as dextran sulphate and bacterial LPS, and activates downstream signaling cascades through the adapter DAP12. Individuals homozygous for inactivating mutations in TREM2 exhibit demyelination of subcortical white matter and a lethal early onset dementia known as Nasu-Hakola disease. How TREM2 deficiency mediates demyelination and disease is unknown. Here, we addressed the basis for this genetic association using Trem2(-/-) mice. In WT mice, microglia expanded in the corpus callosum with age, whereas aged Trem2(-/-) mice had fewer microglia with an abnormal morphology. In the cuprizone model of oligodendrocyte degeneration and demyelination, Trem2(-/-) microglia failed to amplify transcripts indicative of activation, phagocytosis, and lipid catabolism in response to myelin damage. As a result, Trem2(-/-) mice exhibited impaired myelin debris clearance, axonal dystrophy, oligodendrocyte reduction, and persistent demyelination after prolonged cuprizone treatment. Moreover, myelin-associated lipids robustly triggered TREM2 signaling in vitro, suggesting that TREM2 may directly sense lipid components exposed during myelin damage. We conclude that TREM2 is required for promoting microglial expansion during aging and microglial response to insults of the white matter.
Journal Article