Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
162
result(s) for
"Comín, Francisco A."
Sort by:
Structural and Functional Loss in Restored Wetland Ecosystems
by
Comín, Francisco A.
,
Yockteng, Roxana
,
Power, Mary E.
in
Animals
,
Aquatic ecosystems
,
Australia
2012
Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.
Journal Article
Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter
by
Comín, Francisco A.
,
Lavorel, Sandra
,
Berraquero-Díaz, Luis
in
Access control
,
Analysis
,
Aquatic ecosystems
2015
The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the \"cascade\" framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders' interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders' ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services.
Journal Article
Interactions Among Ecosystem Services Across Land Uses in a Floodplain Agroecosystem
by
Comín, Francisco A.
,
Felipe-Lucia, María R.
,
Bennett, Elena M.
in
Agricultural ecosystems
,
Agricultural management
,
agroecosystem
2014
Managing human-dominated landscapes such as agroecosystems is one of the main challenges facing society today. Decisions about land-use management in agroecosystems involve spatial and temporal trade-offs. The key scales at which these trades-offs occur are poorly understood for most systems, and quantitative assessments of the services provided by agroecosystems under different combinations of land uses are rare. To fill these knowledge gaps, we measured 12 ecosystem services (ES), including climate regulation, gas regulation, soil stability, nutrient regulation, habitat quality, raw material production, food production, fishing, sports, recreation, education, and social relationships, in seven common land-use types at three spatial scales, i.e., patch, municipality, and landscape, in a riparian floodplain in Spain. We identified the provision of each ES in each land-use type either by direct measurement or from public databases. We analyzed the interactions, i.e., trade-offs and synergies, among ES across land uses and spatial scales and estimated ES provision in several land-use change scenarios. Our results illustrated that each land-use type provides unique bundles of ES and that the spatial scale at which measurements were taken affected the mixture of services. For instance, a land-use type with low provision of services per hectare but with an extensive area can supply more services to the overall landscape than a land-use type supplying higher values of services per hectare but with a smaller extent. Hence, riparian forest supplied the most service of any land-use type at the patch scale, but dry cereal croplands provided the most services across the municipality and landscape because of their large area. We found that most ES should be managed primarily at the patch scale, but food production, fishing, and social relationships were more relevant to manage at the municipality scale. There was great variability in ES interactions across scales with different causes of trade-offs at each scale. We identified more significant synergies among ES than trade-offs. Trade-offs were originated because some services were mutually incompatible within a given land use, whereas the provision of others depended on land-management decisions within a land-use type. Thus, we propose a classification of ES interactions that incorporates societal values as drivers of management decisions along with biophysical factors as likely causes of ES trade-offs and conclude with practical suggestions to reduce trade-offs and to enhance the supply of multiple ES to society.
Journal Article
Scientific Foundations for an IUCN Red List of Ecosystems
by
Bonifacio, Ronald
,
Oliveira-Miranda, María A.
,
Rodríguez-Clark, Kathryn M.
in
Analysis
,
Aquatic ecosystems
,
Biodiversity
2013
An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.
Journal Article
Actual state of European wetlands and their possible future in the context of global climate change
by
Laiho, Raija
,
Pokorný, Jan
,
Comín, Francisco A.
in
agricultural resources
,
Agriculture
,
Biodiversity
2013
The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other.
Journal Article
InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services
by
Jeschke, Jonathan M.
,
Gallardo, Belinda
,
Bacher, Sven
in
animals
,
Biodiversity
,
Climate change
2019
Invasive Alien Species (IAS) are amongst the most significant drivers of species extinction and ecosystem degradation, causing negative impacts on ecosystem services and human well-being. InvasiBES, a project funded by BiodivERsA-Belmont Forum for 2019–2021, will use data and models across scales, habitats and species to understand and anticipate the multi-faceted impacts of IAS and to provide tools for their management. Using Alien Species Narratives as reference, we will design future intervention scenarios focused on prevention, control and eradication of IAS in Europe and the United States, through a participatory process bringing together the expertise of scientists and stakeholders. We will also adapt current impact assessment protocols to assess both the detrimental and beneficial impacts of IAS on biodiversity and ecosystem services. This information will then be combined with maps of the potential distribution of Invasive Species of Interest in Europe under current and future climate-change scenarios. Likewise, we will anticipate areas under risk of invasion by range-shifting plants of concern in the US. Finally, focusing on three local-scale studies that cover a range of habitats (freshwater, terrestrial and marine), invasive species (plants and animals) and ecosystem services (supporting, provisioning, regulating and cultural), we will use empirical field data to quantify the real-world impacts of IAS on biodiversity and ecosystem services and calculate indicators of ecosystem recovery after the invader is removed. Spatial planning tools (InVEST) will be used to evaluate the costs and benefits of species-specific intervention scenarios at the regional scale. Data, models and maps, developed throughout the project, will serve to build scenarios and models of biodiversity and ecosystem services that are relevant to underpin management of IAS at multiple scales.
Journal Article
Prioritizing sites for ecological restoration based on ecosystem services
by
Miranda, Beatriz
,
Navarro, Enrique
,
Comín, Francisco A.
in
Biological control
,
Canyons
,
case studies
2018
1. Restoration ecology that maximizes ecosystem services (ES) requires planning at large spatial scales, which are often the most meaningful for ecosystem functioning and ES supply. As economic resources to undertake ecological restoration at large scales are scarce, prioritizing sites to enhance multiple ES supply is critical. 2. We present the Relative Aggregated Value of Ecosystem Services (RAVES) index, to prioritize sites for ecological restoration based on the assessment of multiple ES. We tested the spatial heterogeneity of ES to identify the relevant scale to managing ES and to apply the RAVES index using a local case study. We also used the RAVES index to compare three alternative restoration scenarios to enhance ES based on the availability of socio-economic resources. 3. The highest RAVES values were found in areas with natural vegetation and in gorges with riparian forests. The lowest values were found in crop fields, steep slopes and river stretches without riparian forest. The multiscale spatial analysis indicated that most ES showed significant heterogeneity at multiple spatial scales, especially at broad (20-30 km) and very broad (40-50 km) scales. For spatial scales smaller than 2 km, only biological control showed significant heterogeneity. 4. The optimal socio-economic conditions to enhance ES supply were met when both private and public land, together with economic funds, were available to implement ecological restoration. As most areas with low RAVES were in private lands, even with limited funds restoration of private lands would result in a large increase in RAVES. 5. Synthesis and applications. The Relative Aggregated Value of Ecosystem Services (RAVES) index is a practical tool to hierarchically prioritize sites for ecological restoration across large spatial scales. The RAVES index integrates both ecological information and societal values by weighting ecosystem services (ES) via a multicriteria analysis and can be used in scenario analysis to identify optimal management scenarios. We highlight the importance of analysing the spatial heterogeneity of ES to identify the most relevant scale to applying the RAVES index and to managing ES via ecological restoration.
Journal Article
Recent Changes in the Riparian Forest of a Large Regulated Mediterranean River: Implications for Management
by
Muller, Etienne
,
Comín, Francisco A
,
Cabezas, Álvaro
in
Aerial photography
,
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
2010
The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species (Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra-S. alba-Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.
Journal Article
Urban Green Infrastructure and Sustainable Development: A Review
2021
Urban green infrastructure (UGI) can alleviate many of the problems that the growing urban population is facing. This study performed a literature review about UGI and sustainable development (SD) using the Web of Science (WoS) and the software VOSviewer. Of 195 papers selected, 89 are qualitative, focusing on theoretical approaches and design; equally, 89 are quantitative, dealing with metrics and spatial analysis and 17 combined both approaches. A high connectivity between “green infrastructure”, “ecosystem services”, “urban planning” and “sustainable development” was observed. Only 39 of the documents embrace environmental, social and economic aspects. Most of the papers are related to Sustainable Development Goal (SDG) 11, “to make cities inclusive, safe, resilient and sustainable” and SDG 15, “protect, restore and promote sustainable use of terrestrial ecosystems”. Further research integrating the three pillars of sustainability and relating UGI to all the SDGs is recommended.
Journal Article