Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Compaore, Yves D"
Sort by:
Pyronaridine–artesunate or dihydroartemisinin–piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial
by
Beavogui, Abdoul Habib
,
Fofana, Bakary
,
Coulibaly, Aboubacar S
in
Adults
,
Alanine
,
Alanine transaminase
2018
Artemether–lumefantrine and artesunate–amodiaquine are used as first-line artemisinin-based combination therapies (ACTs) in west Africa. Pyronaridine–artesunate and dihydroartemisinin–piperaquine are potentially useful for diversification of ACTs in this region, but further safety and efficacy data are required on malaria retreatment.
We did a randomised, multicentre, open-label, longitudinal, controlled phase 3b/4 clinical trial at seven tertiary centres in Burkina Faso, Guinea, and Mali. Eligible participants for first malaria episode and all retreatment episodes were adults and children aged 6 months and older with microscopically confirmed Plasmodium spp malaria (>0 to <200 000 parasites per μL of blood) and fever or history of fever in the previous 24 h. Individuals with severe or complicated malaria, an alanine aminotransferase concentration of more than twice the upper limit of normal, or a QTc greater than 450 ms were excluded. Using a randomisation list for each site, masked using sealed envelopes, participants were assigned to either pyronaridine–artesunate or dihydroartemisinin–piperaquine versus either artesunate–amodiaquine or artemether–lumefantrine. Block sizes were two or four if two treatments were allocated, and three or six if three treatments were allocated. Microscopists doing the parasitological assessments were masked to treatment allocation. All treatments were once-daily or twice-daily tablets or granules given orally and dosed by bodyweight over 3 days at the study centre. Patients were followed up as outpatients up to day 42, receiving clinical assessments on days 0, 1, 2, 3, 7, 14, 21, 28, 35, and 42. Two primary outcomes were compared for non-inferiority: the 2-year incidence rate of all microscopically confirmed, complicated and uncomplicated malaria episodes in patients in the intention-to-treat population (ITT; non-inferiority margin 20%); and adequate clinical and parasitological response (ACPR) in uncomplicated malaria across all episodes (unadjusted and PCR-adjusted for Plasmodium falciparum and unadjusted for other Plasmodium spp) in the per-protocol population on days 28 and 42 (non-inferiority margin 5%). Safety was assessed in all participants who received one dose of study drug. This study is registered at the Pan African Clinical Trials Registry (PACTR201105000286876).
Between Oct 24, 2011, and Feb 1, 2016, we assigned 4710 eligible participants to the different treatment strategies: 1342 to pyronaridine–artesunate, 967 to artemether–lumefantrine, 1061 to artesunate–amodiaquine, and 1340 to dihydroartemisinin–piperaquine. The 2-year malaria incidence rate in the ITT population was non-inferior for pyronaridine–artesunate versus artemether–lumefantrine (1·77, 95% CI 1·63–1·93 vs 1·87, 1·72–2·03; rate ratio [RR] 1·05, 95% CI 0·94–1·17); and versus artesunate–amodiaquine (1·39, 95% CI 1·22–1·59 vs 1·35, 1·18–1·54; RR 0·97, 0·87–1·07). Similarly, this endpoint was non-inferior for dihydroartemisinin–piperaquine versus artemether–lumefantrine (1·16, 95% CI 1·01–1·34 vs 1·42 1·25–1·62; RR 1·22, 95% CI 1·06–1·41) and versus artesunate–amodiaquine (1·35, 1·21–1·51 vs 1·68, 1·51–1·88; RR 1·25, 1·02–1·50). For uncomplicated P falciparum malaria, PCR-adjusted ACPR was greater than 99·5% at day 28 and greater than 98·6% at day 42 for all ACTs; unadjusted ACPR was higher for pyronaridine–artesunate versus comparators at day 28 (96·9% vs 82·3% for artemether–lumefantrine and 95·6% vs 89·0% for artesunate–amodiaquine) and for dihydroartemisinin-piperaquine versus comparators (99·5% vs 81·6% for artemether–lumefantrine and 99·0% vs 89·0% for artesunate–amodiaquine). For non-falciparum species, unadjusted ACPR was greater than 98% for all study drugs at day 28 and at day 42 was greater than 83% except for artemether–lumefantrine against Plasmodium ovale (in ten [62·5%] of 16 patients) and against Plasmodium malariae (in nine [75·0%] of 12 patients). Nine deaths occurred during the study, none of which were related to the study treatment. Mostly mild transient elevations in transaminases occurred with pyronaridine–artesunate versus comparators, and mild QTcF prolongation with dihydroartemisinin-piperaquine versus comparators.
Pyronaridine–artesunate and dihydroartemisinin–piperaquine treatment and retreatment of malaria were well tolerated with efficacy that was non-inferior to first-line ACTs. Greater access to these efficacious treatments in west Africa is justified.
The European and Developing Countries Clinical Trial Partnership, Medicines for Malaria Venture (Geneva, Switzerland), the UK Medical Research Council, the Swedish International Development Cooperation Agency, German Ministry for Education and Research, University Claude Bernard (Lyon, France), University of Science, Techniques and Technologies of Bamako (Bamako, Mali), the Centre National de Recherche et de Formation sur le Paludisme (Burkina Faso), Institut de Recherche en Sciences de la Santé (Bobo-Dioulasso, Burkina Faso), and Centre National de Formation et de Recherche en Santé Rurale (Republic of Guinea).
Journal Article
Safety and efficacy of re-treatments with pyronaridine-artesunate in African patients with malaria: a substudy of the WANECAM randomised trial
2016
Sparse data on the safety of pyronaridine-artesunate after repeated treatment of malaria episodes restrict its clinical use. We therefore compared the safety of pyronaridine-artesunate after treatment of the first episode of malaria versus re-treatment in a substudy analysis.
This planned substudy analysis of the randomised, open-label West African Network for Clinical Trials of Antimalarial Drugs (WANECAM) phase 3b/4 trial was done at six health facilities in Mali, Burkina Faso, and Guinea in patients (aged ≥6 months and bodyweight ≥5 kg) with uncomplicated microscopically confirmed Plasmodium spp malaria (parasite density <200 000 per μL blood) and fever or history of fever. The primary safety endpoint was incidence of hepatotoxicity: alanine aminotransferase of greater than five times the upper limit of normal (ULN) or Hy's criteria (alanine aminotransferase or aspartate aminotransferase greater than three times the ULN and total bilirubin more than twice the ULN) after treatment of the first episode of malaria and re-treatment (≥28 days after first treatment) with pyronaridine-artesunate. Pyronaridine-artesunate efficacy was compared with artemether-lumefantrine with the adequate clinical and parasitological response (ACPR) in an intention-to-treat analysis. WANECAM is registered with PACTR.org, number PACTR201105000286876.
Following first treatment, 13 (1%) of 996 patients had hepatotoxicity (including one [<1%] possible Hy's law case) versus two (1%) of 311 patients on re-treatment (neither a Hy's law case). No evidence was found that pyronaridine-artesunate re-treatment increased safety risk based on laboratory values, reported adverse event frequencies, or electrocardiograph findings. For all first treatment or re-treatment episodes, pyronaridine-artesunate (n=673) day 28 crude ACPR was 92·7% (95% CI 91·0–94·3) versus 80·4% (77·8–83·0) for artemether-lumefantrine (n=671). After exclusion of patients with PCR-confirmed new infections, ACPR was similar on treatment and re-treatment and greater than 95% at day 28 and greater than 91% at day 42 in both treatment groups.
The findings that pyronaridine-artesunate safety and efficacy were similar on first malaria treatment versus re-treatment of subsequent episodes lend support for the wider access to pyronaridine-artesunate as an alternative artemisinin-based combination treatment for malaria in sub-Saharan Africa.
European and Developing Countries Clinical Trial Partnership, Medicines for Malaria Venture (Geneva, Switzerland), UK Medical Research Council, Swedish International Development Cooperation Agency, German Ministry for Education and Research, University Claude Bernard (Lyon, France), Malaria Research and Training Centre (Bamako, Mali), Centre National de Recherche et de Formation sur le Paludisme (Burkina Faso), Institut de Recherche en Sciences de la Santé (Bobo-Dioulasso, Burkina Faso), and Centre National de Formation et de Recherche en Santé Rurale (Republic of Guinea).
Journal Article
Optimal dosing of dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in young children
by
White, Nicholas J.
,
Ouédraogo, Jean-Bosco
,
Milligan, Paul
in
631/114/2397
,
692/308/575
,
692/699/255/1629
2019
Young children are the population most severely affected by
Plasmodium falciparum
malaria. Seasonal malaria chemoprevention (SMC) with amodiaquine and sulfadoxine-pyrimethamine provides substantial benefit to this vulnerable population, but resistance to the drugs will develop. Here, we evaluate the use of dihydroartemisinin-piperaquine as an alternative regimen in 179 children (aged 2.33–58.1 months). Allometrically scaled body weight on pharmacokinetic parameters of piperaquine result in lower drug exposures in small children after a standard mg per kg dosage. A covariate-free sigmoidal
E
MAX
-model describes the interval to malaria re-infections satisfactorily. Population-based simulations suggest that small children would benefit from a higher dosage according to the WHO 2015 guideline. Increasing the dihydroartemisinin-piperaquine dosage and extending the dose schedule to four monthly doses result in a predicted relative reduction in malaria incidence of up to 58% during the high transmission season. The higher and extended dosing schedule to cover the high transmission period for SMC could improve the preventive efficacy substantially.
Seasonal malaria chemoprevention provides substantial benefit for young children, but resistance to used drugs will likely develop. Here, Chotsiri et al. evaluate the use of dihydroartemisinin-piperaquine as a regimen in 179 children, and population-based simulations suggest that small children would benefit from a higher and extended dosage.
Journal Article
Hepatic safety of repeated treatment with pyronaridine‐artesunate versus artemether–lumefantrine in patients with uncomplicated malaria: a secondary analysis of the WANECAM 1 data from Bobo-Dioulasso, Burkina Faso
by
Nikiéma, Frederick
,
Zongo, Moussa
,
Kabré, Zachari
in
Adverse events
,
Alkaline phosphatase
,
Analysis
2021
Background
The use of pyronaridine-artesunate (PA) has been associated with scarce transaminitis in patients. This analysis aimed to evaluate the hepatic safety profile of repeated treatment with PA versus artemether–lumefantrine (AL) in patients with consecutive uncomplicated malaria episodes in Bobo-Dioulasso, Burkina Faso.
Methods
This study analysed data from a clinical trial conducted from 2012 to 2015, in which participants with uncomplicated malaria were assigned to either PA or AL arms and followed up to 42 days. Subsequent malaria episodes within a 2-years follow up period were also treated with the same ACT initially allocated. Transaminases (AST/ALT), alkaline phosphatase (ALP), total and direct bilirubin were measured at days 0 (baseline), 3, 7, 28 and on some unscheduled days if required. The proportions of non-clinical hepatic adverse events (AEs) following first and repeated treatments with PA and AL were compared within study arms. The association of these AEs with retreatment in each arm was also determined using a logistic regression model.
Results
A total of 1379 malaria episodes were included in the intention to treat analysis with 60% of all cases occurring in the AL arm. Overall, 179 non-clinical hepatic AEs were recorded in the AL arm versus 145 in the PA arm. Elevated ALT was noted in 3.05% of treated malaria episodes, elevated AST 3.34%, elevated ALP 1.81%, and elevated total and direct bilirubin in 7.90% and 7.40% respectively. Retreated participants were less likely to experience elevated ALT and AST than first episode treated participants in both arms. One case of Hy’s law condition was recorded in a first treated participant of the PA arm. Participants from the retreatment group were 76% and 84% less likely to have elevated ALT and AST, respectively, in the AL arm and 68% less likely to present elevated ALT in the PA arm. In contrast, they were almost 2 times more likely to experience elevated total bilirubin in both arms.
Conclusions
Pyronaridine-artesunate and artemether–lumefantrine showed similar hepatic safety when used repeatedly in participants with uncomplicated malaria. Pyronaridine-artesunate represents therefore a suitable alternative to the current first line anti-malarial drugs in use in endemic areas.
Trial registration
Pan African Clinical Trials Registry. PACTR201105000286876
Journal Article
Effect of seasonal malaria chemoprevention plus azithromycin on Plasmodium falciparum transmission: gametocyte infectivity and mosquito fitness
by
Yerbanga, Rakiswendé Serge
,
Yao, Franck A.
,
Yaméogo, Koudraogo Bienvenue
in
Amodiaquine
,
Antibiotics
,
Antimalarial agents
2021
Background
Seasonal malaria chemoprevention (SMC) consists of administration of sulfadoxine-pyrimethamine (SP) + amodiaquine (AQ) at monthly intervals to children during the malaria transmission period. Whether the addition of azithromycin (AZ) to SMC could potentiate the benefit of the intervention was tested through a double-blind, randomized, placebo-controlled trial. The effect of SMC and the addition of AZ, on malaria transmission and on the life history traits of
Anopheles gambiae
mosquitoes have been investigated.
Methods
The study included 438 children randomly selected from among participants in the SMC + AZ trial and 198 children from the same area who did not receive chemoprevention. For each participant in the SMC + AZ trial, blood was collected 14 to 21 days post treatment, examined for the presence of malaria sexual and asexual stages and provided as a blood meal to
An. gambiae
females using a direct membrane-feeding assay.
Results
The SMC treatment, with or without AZ, significantly reduced the prevalence of asexual
Plasmodium falciparum
(LRT X
2
2
= 69, P < 0.0001) and the gametocyte prevalence (LRT X
2
2
= 54, P < 0.0001). In addition, the proportion of infectious feeds (LRT X
2
2
= 61, P < 0.0001) and the prevalence of oocysts among exposed mosquitoes (LRT
X
2
2
= 22.8, P < 0.001) was reduced when mosquitoes were fed on blood from treated children compared to untreated controls. The addition of AZ to SPAQ was associated with an increased proportion of infectious feeds (LRT X
2
1
= 5.2, P = 0.02), suggesting a significant effect of AZ on gametocyte infectivity. There was a slight negative effect of SPAQ and SPAQ + AZ on mosquito survival compared to mosquitoes fed with blood from control children (LRTX
2
2
= 330, P < 0.0001).
Conclusion
This study demonstrates that SMC may contribute to a reduction in human to mosquito transmission of
P. falciparum
, and the reduced mosquito longevity observed for females fed on treated blood may increase the benefit of this intervention in control of malaria. The addition of AZ to SPAQ in SMC appeared to enhance the infectivity of gametocytes providing further evidence that this combination is not an appropriate intervention.
Journal Article
Efficacy of artemether-lumefantrine and artesunate-amodiaquine as first line therapy of uncomplicated malaria in Burkina Faso, 11 years after policy change
by
Barry, Nouhoun
,
Zongo, Moussa
,
Compaoré, Yves Daniel
in
Adolescent
,
Amodiaquine - administration & dosage
,
Amodiaquine - adverse effects
2020
Artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) are the first line therapy of uncomplicated malaria in Burkina Faso. We assessed the treatment efficacy, tolerability of these drugs 11 years following its adoption as first line treatment.
In this opened randomized controlled trial carried out in 2016, participants with age over 6 months who consented to participate were randomly assigned treatment with artemether-lumefantrine or artesunate-amodiaquine and followed up for 28 days. Primary endpoint was the treatment efficacy over 28 days of follow up unadjusted by Polymerase chain reaction (PCR).
Two hundred and eighty-one (281) participants were enrolled and the completion rate was 92.9%. No early treatment failure was found. Adequate clinical and parasitological responses were significantly higher in artesunate-amodiaquine group (97% versus 85.2%, p = 0.0008). On day 28, the risk of failure was 4 times higher in AL group 20.14%, 95% CI (13-30.47) against 5.16%, 95% CI (1.91-13.54) in ASAQ group. All treatments had a similar and good tolerability profile.
Eleven years following artemether-lumefantrine and artesunate-amodiaquine adoption as first line therapy for uncomplicated malaria in Burkina Faso, artemether-lumefantrine retained fairly good efficacy even though its efficacy fell below WHO threshold of 90% considering uncorrected outcome.
Journal Article
Education
by
Henaff, Nolwen
,
Penrad, Jean-Claude
,
Schlemmer, Bernard
in
Access to education
,
Adolescents
,
Africa
2003
Journal Article