Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Conci, Nicole"
Sort by:
Monitoring tumor growth rate to predict immune checkpoint inhibitors’ treatment outcome in advanced NSCLC
Introduction: Radiological response assessment to immune checkpoint inhibitor is challenging due to atypical pattern of response and commonly used RECIST 1.1 criteria do not take into account the kinetics of tumor behavior. Our study aimed at evaluating the tumor growth rate (TGR) in addition to RECIST 1.1 criteria to assess the benefit of immune checkpoint inhibitors (ICIs). Methods: Tumor real volume was calculated with a dedicated computed tomography (CT) software that semi-automatically assess tumor volume. Target lesions were identified according to RECIST 1.1. For each patient, we had 3 measurement of tumor volume. CT-1 was performed 8–12 weeks before ICI start, the CT at baseline for ICI was CT0, while CT + 1 was the first assessment after ICI. We calculated the percentage increase in tumor volume before (TGR1) and after immunotherapy (TGR2). Finally, we compared TGR1 and TGR2. If no progressive disease (PD), the group was disease control (DC). If PD but TGR2 < TGR1, it was called LvPD and if TGR2 ⩾ TGR1, HvPD. Results: A total of 61 patients who received ICIs and 33 treated with chemotherapy (ChT) were included. In ICI group, 18 patients were HvPD, 22 LvPD, 21 DC. Median OS was 4.4 months (95% CI: 2.0–6.8, reference) for HvPD, 7.1 months (95% CI 5.4–8.8) for LvPD, p = 0.018, and 20.9 months (95% CI: 12.5–29.3) for DC, p < 0.001. In ChT group, 7 were categorized as HvPD, 17 as LvPD and 9 as DC. No difference in OS was observed in the ChT group (p = 0.786) Conclusion: In the presence of PD, a decrease in TGR may result in a clinical benefit in patients treated with ICI but not with chemotherapy. Monitoring TGR changes after ICIs administration can help physician in deciding to treat beyond PD.
How Do Molecular Classifications Affect the Neoadjuvant Treatment of Muscle-Invasive Urothelial Carcinoma?
Despite the significant improvements in the field of oncological treatments in recent decades, and the advent of targeted therapies and immunotherapy, urothelial carcinoma of the bladder remains a highly heterogeneous and difficult-to-treat neoplasm with a poor prognosis. In this context, owing to the new methods of genomic sequencing, numerous studies have analyzed the genetic features of muscle-invasive bladder cancer, providing a consensus set of molecular classes, to identify malignancies that may respond better to specific treatments (standard chemotherapy, immunotherapy, target therapy, local-regional treatment, or combinations) and improve the survival. The aim of the current review is to provide an overview of the current status of the molecular landscape of muscle-invasive bladder cancer, focusing our attention on therapeutic and prognostic implications in order to select the most effective and tailored therapeutic regimen for the individual patient.
Climate Change and Health: Challenges to the Local Government Environmental Health Workforce in South Australia
Climate change is the most urgent and significant public health risk facing the globe. In Australia, it has been identified that Environmental Health Officers/Practitioners (EHOs/EHPs, hereafter EHOs) are a currently underutilized source of knowledge and skills that can contribute to climate change adaptation planning at the local government level. The ability of local government EHOs to utilize their local knowledge and skills in human health risk assessment during a public health emergency was demonstrated through their role in the response to COVID-19. This study used a survey and follow up interviews to examine the roles and responsibilities of EHOs during the COVID-19 pandemic and used the results to examine the potential of the workforce to tackle climate change and health related issues. What worked well, what regulatory tools were helpful, how interagency collaboration worked and what barriers or hindering factors existed were also explored. A workforce review of EHOs in South Australia was also undertaken to identify current and future challenges facing EHOs and their capacity to assist in climate change preparedness. The findings demonstrated that the workforce was used in the response to COVID-19 for varying roles by councils, including in education and communication (both internally and externally) as well as monitoring and reporting compliance with directions. Notably, half the workforce believed they could have been better utilized, and the other half thought they were well utilized. The South Australian Local Government Functional Support Group (LGFSG) was praised by the workforce for a successful approach in coordinating multiagency responses and communicating directions in a timely fashion. These lessons learnt from the COVID-19 pandemic should be incorporated into climate change adaptation planning. To ensure consistent messaging and a consolidated information repository, a centralized group should be used to coordinate local government climate change adaptation plans in relation to environmental health and be included in all future emergency management response plans. The surveyed EHOs identified environmental health issues associated with climate change as the most significant future challenge; however, concerningly, participants believe that a lack of adequate resourcing, leading to workforce shortages, increasing workloads and a lack of support, is negatively impacting the workforce’s preparedness to deal with these emerging issues. It was suggested that the misperception of environmental health and a failure to recognize its value has resulted in a unique dilemma where EHOs and their councils find themselves caught between managing current workload demands and issues, and endeavouring to prepare, as a priority, for emerging environmental health issues associated with climate change and insufficient resources.