Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
82 result(s) for "Condamine, Fabien L"
Sort by:
The angiosperm radiation played a dual role in the diversification of insects and insect pollinators
Interactions with angiosperms have been hypothesised to play a crucial role in driving diversification among insects, with a particular emphasis on pollinator insects. However, support for coevolutionary diversification in insect–plant interactions is weak. Macroevolutionary studies of insect and plant diversities support the hypothesis that angiosperms diversified after a peak in insect diversity in the Early Cretaceous. Here, we used the family-level fossil record of insects as a whole, and insect pollinator families in particular, to estimate diversification rates and the role of angiosperms on insect macroevolutionary history using a Bayesian process-based approach. We found that angiosperms played a dual role that changed through time, mitigating insect extinction in the Cretaceous and promoting insect origination in the Cenozoic, which is also recovered for insect pollinator families only. Although insects pollinated gymnosperms before the angiosperm radiation, a radiation of new pollinator lineages began as angiosperm lineages increased, particularly significant after 50 Ma. We also found that global temperature, increases in insect diversity, and spore plants were strongly correlated with origination and extinction rates, suggesting that multiple drivers influenced insect diversification and arguing for the investigation of different explanatory variables in further studies. Interactions with angiosperms are thought to have had a significant impact on insect diversification. Here, the authors use a Bayesian process-based approach to find that angiosperm radiation played a dual role that changed through time, mitigating insect extinction in the Cretaceous and promoting insect origination in the Cenozoic.
Faster Speciation and Reduced Extinction in the Tropics Contribute to the Mammalian Latitudinal Diversity Gradient
The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals) peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas) reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha), high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha), or both (Chiroptera and Rodentia). Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the \"out of the tropics\" hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern.
Climate cooling and clade competition likely drove the decline of lamniform sharks
Understanding heterogeneity in species richness between closely related clades is a key research question in ecology and evolutionary biology. Multiple hypotheses have been proposed to interpret such diversity contrasts across the tree of life, with most studies focusing on speciation rates to explain clades’ evolutionary radiations, while often neglecting extinction rates. Here we study a notorious biological model as exemplified by the sister relationships between mackerel sharks (Lamniformes, 15 extant species) and ground sharks (Carcharhiniformes, ∼290 extant species). Using a comprehensive fossil dataset, we found that the diversity dynamics of lamniforms waxed and waned following repeated cycles of radiation phases and declining phases. Radiation phases peaked up to 3 times the current diversity in the early Late Cretaceous. In the last 20 million years, the group declined to its present-day diversity. Along with a higher extinction risk for young species, we further show that this declining pattern is likely attributed to a combination of abiotic and biotic factors, with a cooling-driven extinction (negative correlation between temperature and extinction) and clade competition with some ground sharks. Competition from multiple clades successively drove the demise and replacement of mackerel sharks due to a failure to originate facing the rise of ground sharks, particularly since the Eocene. These effects came from ecologically similar carcharhiniform species inhibiting diversification of mediumand large-sized lamniforms. These results imply that the interplay between abiotic and biotic drivers had a substantial role in extinction and speciation, respectively, which determines the sequential rise and decline of marine apex predators.
Amazonia is the primary source of Neotropical biodiversity
The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climatic changes. However, we still lack a basic understanding of how Neotropical biodiversity was assembled over evolutionary timescales. Here we infer the timing and origin of the living biota in all major Neotropical regions by performing a cross-taxonomic biogeographic analysis based on 4,450 species from six major clades across the tree of life (angiosperms, birds, ferns, frogs, mammals, and squamates), and integrate >1.3 million species occurrences with large-scale phylogenies. We report an unprecedented level of biotic interchange among all Neotropical regions, totaling 4,525 dispersal events. About half of these events involved transitions between major environmental types, with a predominant directionality from forested to open biomes. For all taxonomic groups surveyed here, Amazonia is the primary source of Neotropical diversity, providing >2,800 lineages to other regions. Most of these dispersal events were to Mesoamerica (∼1,500 lineages), followed by dispersals into open regions of northern South America and the Cerrado and Chaco biomes. Biotic interchange has taken place for >60 million years and generally increased toward the present. The total amount of time lineages spend in a region appears to be the strongest predictor of migration events. These results demonstrate the complex origin of tropical ecosystems and the key role of biotic interchange for the assembly of regional biotas.
The rise of angiosperms pushed conifers to decline during global cooling
Competition among species and entire clades can impact species diversification and extinction, which can shape macroevolutionary patterns. The fossil record shows successive biotic turnovers such that a dominant group is replaced by another. One striking example involves the decline of gymnosperms and the rapid diversification and ecological dominance of angiosperms in the Cretaceous. It is generally believed that angiosperms outcompeted gymnosperms, but the macroevolutionary processes and alternative drivers explaining this pattern remain elusive. Using extant time trees and vetted fossil occurrences for conifers, we tested the hypotheses that clade competition or climate change led to the decline of conifers at the expense of angiosperms. Here, we find that both fossil and molecular data show high congruence in revealing 1) low diversification rates, punctuated by speciation pulses, during warming events throughout the Phanerozoic and 2) that conifer extinction increased significantly in the Mid- Cretaceous (100 to 110 Ma) and remained high ever since. Their extinction rates are best explained by the rise of angiosperms, rejecting alternative models based on either climate change or time alone. Our results support the hypothesis of an active clade replacement, implying that direct competition with angiosperms increased the extinction of conifers by pushing their remaining species diversity and dominance out of the warm tropics. This study illustrates how entire branches on the Tree of Life may actively compete for ecological dominance under changing climates.
Combining palaeontological and neontological data shows a delayed diversification burst of carcharhiniform sharks likely mediated by environmental change
Estimating deep-time species-level diversification processes remains challenging. Both the fossil record and molecular phylogenies allow the estimation of speciation and extinction rates, but each type of data may still provide an incomplete picture of diversification dynamics. Here, we combine species-level palaeontological (fossil occurrences) and neontological (molecular phylogenies) data to estimate deep-time diversity dynamics through process-based birth–death models for Carcharhiniformes, the most speciose shark order today. Despite their abundant fossil record dating back to the Middle Jurassic, only a small fraction of extant carcharhiniform species is recorded as fossils, which impedes relying only on the fossil record to study their recent diversification. Combining fossil and phylogenetic data, we recover a complex evolutionary history for carcharhiniforms, exemplified by several variations in diversification rates with an early low diversity period followed by a Cenozoic radiation. We further reveal a burst of diversification in the last 30 million years, which is partially recorded with fossil data only. We also find that reef expansion and temperature change can explain variations in speciation and extinction through time. These results pinpoint the primordial importance of these environmental variables in the evolution of marine clades. Our study also highlights the benefit of combining the fossil record with phylogenetic data to address macroevolutionary questions.
The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae)
The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity.
Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures
The question why non-avian dinosaurs went extinct 66 million years ago (Ma) remains unresolved because of the coarseness of the fossil record. A sudden extinction caused by an asteroid is the most accepted hypothesis but it is debated whether dinosaurs were in decline or not before the impact. We analyse the speciation-extinction dynamics for six key dinosaur families, and find a decline across dinosaurs, where diversification shifted to a declining-diversity pattern ~76 Ma. We investigate the influence of ecological and physical factors, and find that the decline of dinosaurs was likely driven by global climate cooling and herbivorous diversity drop. The latter is likely due to hadrosaurs outcompeting other herbivores. We also estimate that extinction risk is related to species age during the decline, suggesting a lack of evolutionary novelty or adaptation to changing environments. These results support an environmentally driven decline of non-avian dinosaurs well before the asteroid impact. Dinosaurs are thought to have been driven extinct by an asteroid impact 66 million years ago. Here, Condamine et al. show that six major dinosaur families were already in decline in the preceding 10 million years, possibly due to global cooling and competition among herbivores.
Multiple drivers and lineage-specific insect extinctions during the Permo–Triassic
The Permo–Triassic interval encompasses three extinction events including the most dramatic biological crisis of the Phanerozoic, the latest Permian mass extinction. However, their drivers and outcomes are poorly quantified and understood for terrestrial invertebrates, which we assess here for insects. We find a pattern with three extinctions: the Roadian/Wordian (≈266.9 Ma; extinction of 64.5% insect genera), the Permian/Triassic (≈252 Ma; extinction of 82.6% insect genera), and the Ladinian/Carnian boundaries (≈237 Ma; extinction of 74.8% insect genera). We also unveil a heterogeneous effect of these extinction events across the major insect clades. Because extinction events have impacted Permo–Triassic ecosystems, we investigate the influence of abiotic and biotic factors on insect diversification dynamics and find that changes in floral assemblages are likely the strongest drivers of insects’ responses throughout the Permo–Triassic. We also assess the effect of diversity dependence between three insect guilds; an effect ubiquitously found in current ecosystems. We find that herbivores held a central position in the Permo–Triassic interaction network. Our study reveals high levels of insect extinction that profoundly shaped the evolutionary history of the most diverse non-microbial lineage. The impact of three extinction events during the Permo–Triassic interval on terrestrial invertebrates is unclear. Here, the authors find that key abiotic and biotic factors, including changes in floral assemblages, were correlated with changes in insect diversity through this interval.
Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot
The Andean mountains of South America are the most species-rich biodiversity hotspot worldwide with c. 15% of the world's plant species, in only 1% of the world's land surface. Orchids are a key element of the Andean flora, and one of the most prominent components of the Neotropical epiphyte diversity, yet very little is known about their origin and diversification. We address this knowledge gap by inferring the biogeographical history and diversification dynamics of the two largest Neotropical orchid groups (Cymbidieae and Pleurothallidinae), using two unparalleled, densely sampled orchid phylogenies (including more than 400 newly generated DNA sequences), comparative phylogenetic methods, geological and biological datasets. We find that the majority of Andean orchid lineages only originated in the last 20-15 million yr. Andean lineages are derived from lowland Amazonian ancestors, with additional contributions from Central America and the Antilles. Species diversification is correlated with Andean orogeny, and multiple migrations and recolonizations across the Andes indicate that mountains do not constrain orchid dispersal over long timescales. Our study sheds new light on the timing and geography of a major Neotropical diversification, and suggests that mountain uplift promotes species diversification across all elevational zones.