Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Conlan, Jessica A."
Sort by:
Comparing the capacity of five different dietary treatments to optimise growth and nutritional composition in two scleractinian corals
Developing an optimal heterotrophic feeding regime has the potential to improve captive coral growth and health. This study evaluated the efficacy of three exogenous diets: Artemia nauplii (ART), a commercially available coral diet (Reef Roids) (RR), and a novel, micro-bound diet (ATF), against a comparatively natural, unfiltered seawater treatment (RAW), and an unfed, ultra-filtered seawater treatment (CTL), in adult Acropora millepora and Pocillopora acuta nubbins. After 90 days, both species showed significantly positive weight gain in response to one treatment (A. millepora-RAW, P. acuta-ART), and comparatively low growth in response to another (A. millepora-ATF, P. acuta-RR). The results highlighted substantial differences in the nutritional requirements between species. The nutritional composition of A. millepora in the best performing treatment was dominated by high-energy materials such as storage lipids and saturated and monounsaturated fatty acids. In contrast, the P. acuta nutritional profile in the superior treatment showed a predominance of structural materials, including protein, phospholipids, and polyunsaturated fatty acids. This study demonstrates that Artemia nauplii can successfully replace a natural feeding regime for captive P. acuta, yet highlights the considerable work still required to optimise supplementary feeding regimes for A. millepora.
Influence of different feeding regimes on the survival, growth, and biochemical composition of Acropora coral recruits
Heterotrophic feeding in newly-settled coral planulae can potentially improve survivorship and accelerate early development in some species; however, an optimal diet to facilitate this does not currently exist. This study evaluated the efficacy of three heterotrophic feeding regimes (enriched rotifers, unfiltered seawater, and a novel, particulate diet), against a wholly-phototrophic treatment on Acropora hyacinthus, A. loripes, A. millepora, and A. tenuis recruits, over 93 days post-settlement. The unfiltered seawater treatment recorded maximum survival for all species (A. hyacinthus 95.9±8.0%, A. loripes: 74.3±11.5%, A. millepora: 67±12.7%, A. tenuis: 53.2±11.3%), although not significant. Growth (% surface area gain) was also greatest in the unfiltered seawater, and this was significant for A. millepora (870±307%) and A. tenuis (693±91.8%) (p<0.05). Although total lipid concentration was relatively stable across treatments, the lipid class composition exhibited species-specific responses to each treatment. Lower saturated and higher polyunsaturated fatty acids appeared beneficial to recruit performance, particularly in the unfiltered seawater, which generally contained the highest levels of 20:5n-3 (EPA), 22:6n-3 (DHA), and 20:4n-6 (ARA). The present study demonstrates the capacity of a nutritionally adequate and readily accepted heterotrophic feeding regime to increase coral recruit survival, growth, and health, which can greatly reduce the time required in cost- and labour-intensive culture.
A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences
Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral’s condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto . Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes ( Acropora millepora , Montipora crassotuberculata , Porites cylindrica , and Pocillopora damicornis ). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.
Intra-colonial diversity in the scleractinian coral, Acropora millepora : identifying the nutritional gradients underlying physiological integration and compartmentalised functioning
Scleractinian corals are colonial organisms comprising multiple physiologically integrated polyps and branches. Colonialism in corals is highly beneficial, and allows a single colony to undergo several life processes at once through physiological integration and compartmentalised functioning. Elucidating differences in the biochemical composition of intra-colonial branch positions will provide valuable insight into the nutritional reserves underlying different regions in individual coral colonies. This will also ascertain prudent harvesting strategies of wild donor-colonies to generate coral stock with high survival and vigour prospects for reef-rehabilitation efforts and captive husbandry. This study examined the effects of colony branch position on the nutritional profile of two different colony sizes of the common scleractinian, Acropora millepora . For smaller colonies, branches were sampled at three locations: the colony centre (S-centre), 50% of the longitudinal radius length (LRL) (S-50), and the colony edge (S-edge). For larger colonies, four locations were sampled: the colony centre (L-centre), 33.3% of the LRL (L-33), 66.6% of the LRL (L-66), and the edge (L-edge). Results demonstrate significant branch position effects, with the edge regions containing higher protein, likely due to increased tissue synthesis and calcification. Meanwhile, storage lipid and total fatty acid concentrations were lower at the edges, possibly reflecting catabolism of high-energy nutrients to support proliferating cells. Results also showed a significant effect of colony size in the two classes examined. While the major protein and structural lipid sink was exhibited at the edge for both sizes, the major sink for high-energy lipids and fatty acids appeared to be the L-66 position of the larger colonies and the S-centre and S-50 positions for the smaller colonies. These results confirm that the scleractinian coral colony is not nutritionally homogeneous, and while different regions of the coral colony are functionally specialised, so too are their nutritional profiles geared toward meeting specific energetic demands.
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Fishing intensification as response to Late Holocene socio-ecological instability in southeastern South America
The emergence of plant-based economies have dominated evolutionary models of Middle and Late Holocene pre-Columbian societies in South America. Comparatively, the use of aquatic resources and the circumstances for intensifying their exploitation have received little attention. Here we reviewed the stable carbon and nitrogen isotope composition of 390 human individuals from Middle and Late Holocene coastal sambaquis, a long-lasting shell mound culture that flourished for nearly 7000 years along the Atlantic Forest coast of Brazil. Using a newly generated faunal isotopic baseline and Bayesian Isotope Mixing Models we quantified the relative contribution of marine resources to the diet of some of these groups. Through the analysis of more than 400 radiocarbon dates we show that fishing sustained large and resilient populations during most of the Late Holocene. A sharp decline was observed in the frequency of sambaqui sites and radiocarbon dates from ca. 2200 years ago, possibly reflecting the dissolution of several nucleated groups into smaller social units, coinciding with substantial changes in coastal environments. The spread of ceramics from ca. 1200 years ago is marked by innovation and intensification of fishing practices, in a context of increasing social and ecological instability in the Late Holocene.
Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis
Herein we report studies with a novel combination vaccine that, when administered to mice, conferred protection against highly virulent strains of Francisella tularensis by stimulating both arms of the immune system. Our earlier studies with Ft.LVS:: wbtA, an O-polysaccharide (OPS)-negative mutant derived from the available live vaccine strain of F. tularensis ( Ft.LVS), elucidated the role of antibodies to the OPS – a key virulence determinant – in protection against virulent type A organisms. However, when expressed on the organism, the OPS enhances virulence. In contrast, in purified form, the OPS is completely benign. We hypothesized that a novel combination vaccine containing both a component that induces humoral immunity and a component that induces cellular immunity to this intracellular microbe would have an enhanced protective capacity over either component alone and would be much safer than the LVS vaccine. Thus we developed a combination vaccine containing both OPS (supplied in an OPS–tetanus toxoid glycoconjugate) to induce a humoral antibody response and strain Ft.LVS:: wbtA (which is markedly attenuated by its lack of OPS) to induce a cell-mediated protective response. This vaccine protected mice against otherwise-lethal intranasal and intradermal challenge with wild-type F. tularensis strains Schu S4 (type A) and FSC 108 (type B). These results represent a significant advance in our understanding of immunity to F. tularensis and provide important insight into the development of a safer vaccine effective against infections caused by clinical type A and B strains of F. tularensis.
Potent neutralising monoclonal antibodies targeting the spike of NL63 coronavirus
NL63 is an alphacoronavirus that uses the same ACE2 receptor as SARS-CoV and SARS-CoV-2, but generally causes mild respiratory illness. In a cohort of healthy adults, we characterised humoral responses against NL63 spike and isolated a panel of human monoclonal antibodies (mAbs), including five with potent viral neutralising activity. Four neutralising mAbs blocked ACE2 receptor engagement and were found to target the receptor binding motif. A single mAb targeting the S2 subunit displayed potent neutralisation activity comparable to those directly blocking receptor engagement. The S2 mAb targets a membrane proximal heptad repeat 2 (HR2) region in spike that is absent in betacoronaviruses, potentially revealing a site of vulnerability unique to alphacoronaviruses. For all neutralising mAbs, putative epitopes were highly conserved in over 200 NL63 sequences, including recent clinical isolates. A deeper understanding of the recognition of alphacoronavirus spike by human antibodies will guide vaccine and therapeutic development against alphacoronavirus threats.
Magnetoelectric Nanotherapy Achieves Complete Tumor Ablation and Prolonged Survival in Pancreatic Cancer Murine Models
Magnetoelectric nanoparticles (MENPs), when activated by a magnetic field, are shown to provide a minimally invasive, drug‐free, theranostic approach to pancreatic ductal adenocarcinoma (PDAC) treatment. The magnetoelectric effect allows intravenously administered MENPs to be magnetically guided to PDAC tumors and remotely activated with a 7T‐MRI field to induce targeted, electrode‐free tumor ablation with real‐time imaging feedback. A single MENP treatment achieved a threefold median reduction in tumor volume and complete tumor responses in 33.3 % of mice at 300 and 600 µg doses ( N = 17) and significantly longer mean overall survival as compared to the control cohorts (54.1 vs 28.8 days, χ 2 = 40.14, p = 0.045), without evident toxicity in any imaged organ. In contrast, mice receiving subtherapeutic doses, non‐activated MENPs, or saline controls showed no significant response. MRI T 2 * relaxation time decreases closely correlated with tumor reduction (ρ = −0.73, p < 0.001), supporting MENPs as both a therapeutic and imaging biomarker. Mechanistically, MENPs preferentially target cancer cells via magnetic‐field‐driven electrostatic interactions specific to tumor cell membranes, in agreement with multiphysics numerical simulations. Flow cytometry confirmed that MENP activation primarily induces apoptosis, with minimal necrosis, and time‐course studies showed a progressive apoptotic response over 3‐hour post‐treatment. The findings establish MENPs as a versatile, image‐guided, theranostic platform with translational promise for minimally invasive oncology.
Off-line two-dimensional liquid chromatography for metabolomics: an example using Agaricus bisporus mushrooms exposed to UV irradiation
It has previously been shown that irradiation with UV light increases the vitamin D content of certain mushroom species, but the effect on other nutrients is unknown, and is difficult to assess due to the complexity of the sample matrix. Here, an offline reversed phase × reversed phase two-dimensional liquid chromatography methodology was developed and applied to Agaricus bisporus mushrooms in order to demonstrate the potential of the technique and assess the effect of UV irradiation on the mushroom’s metabolic profile. The method allowed the detection of 158 peaks in a single analytical run. A total of 51 compounds including sugars, amino acids, organic and fatty acids and phenolic compounds were identified using certified reference standards. After irradiation of the mushrooms with UV for 30 s the number of peaks detected decreased from 158 to 150; 47 compounds increased in concentration while 72 substances decreased. This is the first time that two-dimensional liquid chromatography has been carried out for the metabolomic analysis of mushrooms. The data provide an overview of the gain/loss of nutritional value of the mushrooms following UV irradiation and demonstrate that the increased peak capacity and separation space of two-dimensional liquid chromatography has great potential in metabolomics.