Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
260 result(s) for "Cook, Alex R"
Sort by:
Projecting social contact matrices in 152 countries using contact surveys and demographic data
Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models' realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which contact data such as POLYMOD are not yet available.
Systematic assessment of the sex ratio at birth for all countries and estimation of national imbalances and regional reference levels
The sex ratio at birth (SRB; ratio of male to female live births) imbalance in parts of the world over the past few decades is a direct consequence of sex-selective abortion, driven by the coexistence of son preference, readily available technology of prenatal sex determination, and fertility decline. Estimation of the degree of SRB imbalance is complicated because of unknown SRB reference levels and because of the uncertainty associated with SRB observations. There are needs for reproducible methods to construct SRB estimates with uncertainty, and to assess SRB inflation due to sex-selective abortion. We compile an extensive database from vital registration systems, censuses and surveys with 10,835 observations, and 16,602 country-years of information from 202 countries. We develop Bayesian methods for SRB estimation for all countries from 1950 to 2017. We model the SRB regional and national reference levels, the fluctuation around national reference levels, and the inflation. The estimated regional reference levels range from 1.031 (95% uncertainty interval [1.027; 1.036]) in sub-Saharan Africa to 1.063 [1.055; 1.072] in southeastern Asia, 1.063 [1.054; 1.072] in eastern Asia, and 1.067 [1.058; 1.077] in Oceania. We identify 12 countries with strong statistical evidence of SRB imbalance during 1970–2017, resulting in 23.1 [19.0; 28.3] million missing female births globally. The majority of those missing female births are in China, with 11.9 [8.5; 15.8] million, and in India, with 10.6 [8.0; 13.6] million.
Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe
The COVID-19 pandemic is an unprecedented global crisis. Many countries have implemented restrictions on population movement to slow the spread of severe acute respiratory syndrome coronavirus 2 and prevent health systems from becoming overwhelmed; some have instituted full or partial lockdowns. However, lockdowns and other extreme restrictions cannot be sustained for the long term in the hope that there will be an effective vaccine or treatment for COVID-19. Governments worldwide now face the common challenge of easing lockdowns and restrictions while balancing various health, social, and economic concerns. To facilitate cross-country learning, this Health Policy paper uses an adapted framework to examine the approaches taken by nine high-income countries and regions that have started to ease COVID-19 restrictions: five in the Asia Pacific region (ie, Hong Kong [Special Administrative Region], Japan, New Zealand, Singapore, and South Korea) and four in Europe (ie, Germany, Norway, Spain, and the UK). This comparative analysis presents important lessons to be learnt from the experiences of these countries and regions. Although the future of the virus is unknown at present, countries should continue to share their experiences, shield populations who are at risk, and suppress transmission to save lives.
A Systematic Review of COVID-19 Epidemiology Based on Current Evidence
As the novel coronavirus (SARS-CoV-2) continues to spread rapidly across the globe, we aimed to identify and summarize the existing evidence on epidemiological characteristics of SARS-CoV-2 and the effectiveness of control measures to inform policymakers and leaders in formulating management guidelines, and to provide directions for future research. We conducted a systematic review of the published literature and preprints on the coronavirus disease (COVID-19) outbreak following predefined eligibility criteria. Of 317 research articles generated from our initial search on PubMed and preprint archives on 21 February 2020, 41 met our inclusion criteria and were included in the review. Current evidence suggests that it takes about 3-7 days for the epidemic to double in size. Of 21 estimates for the basic reproduction number ranging from 1.9 to 6.5, 13 were between 2.0 and 3.0. The incubation period was estimated to be 4-6 days, whereas the serial interval was estimated to be 4-8 days. Though the true case fatality risk is yet unknown, current model-based estimates ranged from 0.3% to 1.4% for outside China. There is an urgent need for rigorous research focusing on the mitigation efforts to minimize the impact on society.
Effectiveness of BNT162b2 Vaccine against Omicron in Children 5 to 11 Years of Age
Data from Singapore on BNT162b2 vaccination in children 5 to 11 years of age showed that during a period of omicron-variant predominance, BNT162b2 reduced the risks of SARS-CoV-2 infection and Covid-19–related hospitalization.
Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era
Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices for populations up to age 80 with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices show qualitative similarities to the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.
Impact of sars-cov-2 interventions on dengue transmission
An estimated 105 million dengue infections occur per year across 120 countries, where traditional vector control is the primary control strategy to reduce contact between mosquito vectors and people. The ongoing sars-cov-2 pandemic has resulted in dramatic reductions in human mobility due to social distancing measures; the effects on vector-borne illnesses are not known. Here we examine the pre and post differences of dengue case counts in Malaysia, Singapore and Thailand, and estimate the effects of social distancing as a treatment effect whilst adjusting for temporal confounders. We found that social distancing is expected to lead to 4.32 additional cases per 100,000 individuals in Thailand per month, which equates to 170 more cases per month in the Bangkok province (95% CI: 100-242) and 2008 cases in the country as a whole (95% CI: 1170-2846). Social distancing policy estimates for Thailand were also found to be robust to model misspecification, and variable addition and omission. Conversely, no significant impact on dengue transmission was found in Singapore or Malaysia. Across country disparities in social distancing policy effects on reported dengue cases are reasoned to be driven by differences in workplace-residence structure, with an increase in transmission risk of arboviruses from social distancing primarily through heightened exposure to vectors in elevated time spent at residences, demonstrating the need to understand the effects of location on dengue transmission risk under novel population mixing conditions such as those under social distancing policies.
SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study
The proportion of asymptomatic carriers and transmission risk factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among household and non-household contacts remains unclear. In Singapore, extensive contact tracing by the Ministry of Health for every diagnosed COVID-19 case, and legally enforced quarantine and intensive health surveillance of close contacts provided a rare opportunity to determine asymptomatic attack rates and SARS-CoV-2 transmission risk factors among community close contacts of patients with COVID-19. This retrospective cohort study involved all close contacts of confirmed COVID-19 cases in Singapore, identified between Jan 23 and April 3, 2020. Household contacts were defined as individuals who shared a residence with the index COVID-19 case. Non-household close contacts were defined as those who had contact for at least 30 min within 2 m of the index case. All patients with COVID-19 in Singapore received inpatient treatment, with access restricted to health-care staff. All close contacts were quarantined for 14 days with thrice-daily symptom monitoring via telephone. Symptomatic contacts underwent PCR testing for SARS-CoV-2. Secondary clinical attack rates were derived from the prevalence of PCR-confirmed SARS-CoV-2 among close contacts. Consenting contacts underwent serology testing and detailed exposure risk assessment. Bayesian modelling was used to estimate the prevalence of missed diagnoses and asymptomatic SARS-CoV-2-positive cases. Univariable and multivariable logistic regression models were used to determine SARS-CoV-2 transmission risk factors. Between Jan 23 and April 3, 2020, 7770 close contacts (1863 household contacts, 2319 work contacts, and 3588 social contacts) linked to 1114 PCR-confirmed index cases were identified. Symptom-based PCR testing detected 188 COVID-19 cases, and 7582 close contacts completed quarantine without a positive SARS-CoV-2 PCR test. Among 7518 (96·8%) of the 7770 close contacts with complete data, the secondary clinical attack rate was 5·9% (95% CI 4·9–7·1) for 1779 household contacts, 1·3% (0·9–1·9) for 2231 work contacts, and 1·3% (1·0–1·7) for 3508 social contacts. Bayesian analysis of serology and symptom data obtained from 1150 close contacts (524 household contacts, 207 work contacts, and 419 social contacts) estimated that a symptom-based PCR-testing strategy missed 62% (95% credible interval 55–69) of COVID-19 diagnoses, and 36% (27–45) of individuals with SARS-CoV-2 infection were asymptomatic. Sharing a bedroom (multivariable odds ratio [OR] 5·38 [95% CI 1·82–15·84]; p=0·0023) and being spoken to by an index case for 30 min or longer (7·86 [3·86–16·02]; p<0·0001) were associated with SARS-CoV-2 transmission among household contacts. Among non-household contacts, exposure to more than one case (multivariable OR 3·92 [95% CI 2·07–7·40], p<0·0001), being spoken to by an index case for 30 min or longer (2·67 [1·21–5·88]; p=0·015), and sharing a vehicle with an index case (3·07 [1·55–6·08]; p=0·0013) were associated with SARS-CoV-2 transmission. Among both household and non-household contacts, indirect contact, meal sharing, and lavatory co-usage were not independently associated with SARS-CoV-2 transmission. Targeted community measures should include physical distancing and minimising verbal interactions. Testing of all household contacts, including asymptomatic individuals, is warranted. Ministry of Health of Singapore, National Research Foundation of Singapore, and National Natural Science Foundation of China.
Short-term and long-term epidemiological impacts of sustained vector control in various dengue endemic settings: A modelling study
As the most widespread viral infection transmitted by the Aedes mosquitoes, dengue has been estimated to cause 51 million febrile disease cases globally each year. Although sustained vector control remains key to reducing the burden of dengue, current understanding of the key factors that explain the observed variation in the short- and long-term vector control effectiveness across different transmission settings remains limited. We used a detailed individual-based model to simulate dengue transmission with and without sustained vector control over a 30-year time frame, under different transmission scenarios. Vector control effectiveness was derived for different time windows within the 30-year intervention period. We then used the extreme gradient boosting algorithm to predict the effectiveness of vector control given the simulation parameters, and the resulting machine learning model was interpreted using Shapley Additive Explanations. According to our simulation outputs, dengue transmission would be nearly eliminated during the early stage of sustained and intensive vector control, but over time incidence would gradually bounce back to the pre-intervention level unless the intervention is implemented at a very high level of intensity. The time point at which intervention ceases to be effective is strongly influenced not only by the intensity of vector control, but also by the pre-intervention transmission intensity and the individual-level heterogeneity in biting risk. Moreover, the impact of many transmission model parameters on the intervention effectiveness is shown to be modified by the intensity of vector control, as well as to vary over time. Our study has identified some of the critical drivers for the difference in the time-varying effectiveness of sustained vector control across different dengue endemic settings, and the insights obtained will be useful to inform future model-based studies that seek to predict the impact of dengue vector control in their local contexts.
Mapping dengue risk in Singapore using Random Forest
Singapore experiences endemic dengue, with 2013 being the largest outbreak year known to date, culminating in 22,170 cases. Given the limited resources available, and that vector control is the key approach for prevention in Singapore, it is important that public health professionals know where resources should be invested in. This study aims to stratify the spatial risk of dengue transmission in Singapore for effective deployment of resources. Random Forest was used to predict the risk rank of dengue transmission in 1km2 grids, with dengue, population, entomological and environmental data. The predicted risk ranks are categorized and mapped to four color-coded risk groups for easy operation application. The risk maps were evaluated with dengue case and cluster data. Risk maps produced by Random Forest have high accuracy. More than 80% of the observed risk ranks fell within the 80% prediction interval. The observed and predicted risk ranks were highly correlated ([Formula: see text]≥0.86, P <0.01). Furthermore, the predicted risk levels were in excellent agreement with case density, a weighted Kappa coefficient of more than 0.80 (P <0.01). Close to 90% of the dengue clusters occur in high risk areas, and the odds of cluster forming in high risk areas were higher than in low risk areas. This study demonstrates the potential of Random Forest and its strong predictive capability in stratifying the spatial risk of dengue transmission in Singapore. Dengue risk map produced using Random Forest has high accuracy, and is a good surveillance tool to guide vector control operations.