Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
178 result(s) for "Cook, Derek G."
Sort by:
The effects of step-count monitoring interventions on physical activity: systematic review and meta-analysis of community-based randomised controlled trials in adults
Background Step-count monitors (pedometers, body-worn trackers and smartphone applications) can increase walking, helping to tackle physical inactivity. We aimed to assess the effect of step-count monitors on physical activity (PA) in randomised controlled trials (RCTs) amongst community-dwelling adults; including longer-term effects, differences between step-count monitors, and between intervention components. Methods Systematic literature searches in seven databases identified RCTs in healthy adults, or those at risk of disease, published between January 2000–April 2020. Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcome was mean differences (MD) with 95% confidence intervals (CI) in steps at follow-up between treatment and control groups. Our preferred outcome measure was from studies with follow-up steps adjusted for baseline steps (change studies); but we also included studies reporting follow-up differences only (end-point studies). Multivariate-meta-analysis used random-effect estimates at different time-points for change studies only. Meta-regression compared effects of different step-count monitors and intervention components amongst all studies at ≤4 months. Results Of 12,491 records identified, 70 RCTs (at generally low risk of bias) were included, with 57 trials (16,355 participants) included in meta-analyses: 32 provided change from baseline data; 25 provided end-point only. Multivariate meta-analysis of the 32 change studies demonstrated step-counts favoured intervention groups: MD of 1126 steps/day 95%CI [787, 1466] at ≤4 months, 1050 steps/day [602, 1498] at 6 months, 464 steps/day [301, 626] at 1 year, 121 steps/day [− 64, 306] at 2 years and 434 steps/day [191, 676] at 3–4 years. Meta-regression of the 57 trials at ≤4 months demonstrated in mutually-adjusted analyses that: end-point were similar to change studies (+ 257 steps/day [− 417, 931]); body-worn trackers/smartphone applications were less effective than pedometers (− 834 steps/day [− 1542, − 126]); and interventions providing additional counselling/incentives were not better than those without (− 812 steps/day [− 1503, − 122]). Conclusions Step-count monitoring leads to short and long-term step-count increases, with no evidence that either body-worn trackers/smartphone applications, or additional counselling/incentives offer further benefit over simpler pedometer-based interventions. Simple step-count monitoring interventions should be prioritised to address the public health physical inactivity challenge. Systematic review registration PROSPERO number CRD42017075810 .
Are noise and air pollution related to the incidence of dementia? A cohort study in London, England
ObjectiveTo investigate whether the incidence of dementia is related to residential levels of air and noise pollution in London.DesignRetrospective cohort study using primary care data.Setting75 Greater London practices.Participants130 978 adults aged 50–79 years registered with their general practices on 1 January 2005, with no recorded history of dementia or care home residence.Primary and secondary outcome measuresA first recorded diagnosis of dementia and, where specified, subgroups of Alzheimer’s disease and vascular dementia during 2005–2013. The average annual concentrations during 2004 of nitrogen dioxide (NO2), particulate matter with a median aerodynamic diameter ≤2.5 µm (PM2.5) and ozone (O3) were estimated at 20×20 m resolution from dispersion models. Traffic intensity, distance from major road and night-time noise levels (Lnight) were estimated at the postcode level. All exposure measures were linked anonymously to clinical data via residential postcode. HRs from Cox models were adjusted for age, sex, ethnicity, smoking and body mass index, with further adjustments explored for area deprivation and comorbidity.Results2181 subjects (1.7%) received an incident diagnosis of dementia (39% mentioning Alzheimer’s disease, 29% vascular dementia). There was a positive exposure response relationship between dementia and all measures of air pollution except O3, which was not readily explained by further adjustment. Adults living in areas with the highest fifth of NO2 concentration (>41.5 µg/m3) versus the lowest fifth (<31.9 µg/m3) were at a higher risk of dementia (HR=1.40, 95% CI 1.12 to 1.74). Increases in dementia risk were also observed with PM2.5, PM2.5 specifically from primary traffic sources only and Lnight, but only NO2 and PM2.5 remained statistically significant in multipollutant models. Associations were more consistent for Alzheimer’s disease than vascular dementia.ConclusionsWe have found evidence of a positive association between residential levels of air pollution across London and being diagnosed with dementia, which is unexplained by known confounding factors.
Prevalence and incidence of neuromuscular conditions in the UK between 2000 and 2019: A retrospective study using primary care data
In the UK, large-scale electronic primary care datasets can provide up-to-date, accurate epidemiological information on rarer diseases, where specialist diagnoses from hospital discharges and clinic letters are generally well recorded and electronically searchable. Current estimates of the number of people living with neuromuscular disease (NMD) have largely been based on secondary care data sources and lacked direct denominators. To estimate trends in the recording of neuromuscular disease in UK primary care between 2000-2019. The Clinical Practice Research Datalink (CPRD) database was searched electronically to estimate incidence and prevalence rates (per 100,000) for a range of NMDs in each year. To compare trends over time, rates were age standardised to the most recent CPRD population (2019). Approximately 13 million patients were actively registered in each year. By 2019, 28,230 active patients had ever received a NMD diagnosis (223.6), which was higher among males (239.0) than females (208.3). The most common classifications were Guillain-Barre syndrome (40.1), myasthenia gravis (33.7), muscular dystrophy (29.5), Charcot-Marie-Tooth (29.5) and inflammatory myopathies (25.0). Since 2000, overall prevalence grew by 63%, with the largest increases seen at older ages (≥65-years). However, overall incidence remained constant, though myasthenia gravis incidence has risen steadily since 2008, while new cases of muscular dystrophy fell over the same period. Lifetime recording of many NMDs on primary care records exceed current estimates of people living with these conditions; these are important data for health service and care planning. Temporal trends suggest this number is steadily increasing, and while this may partially be due to better recording, it cannot be simply explained by new cases, as incidence remained constant. The increase in prevalence among older ages suggests increases in life expectancy among those living with NMDs may have occurred.
Parental and household smoking and the increased risk of bronchitis, bronchiolitis and other lower respiratory infections in infancy: systematic review and meta-analysis
Background Passive smoke exposure increases the risk of lower respiratory infection (LRI) in infants, but the extensive literature on this association has not been systematically reviewed for nearly ten years. The aim of this paper is to provide an updated systematic review and meta-analysis of studies of the association between passive smoking and LRI, and with diagnostic subcategories including bronchiolitis, in infants aged two years and under. Methods We searched MEDLINE and EMBASE (to November 2010), reference lists from publications and abstracts from major conference proceedings to identify all relevant publications. Random effect pooled odds ratios (OR) with 95% confidence intervals (CI) were estimated. Results We identified 60 studies suitable for inclusion in the meta-analysis. Smoking by either parent or other household members significantly increased the risk of LRI; odds ratios (OR) were 1.22 (95% CI 1.10 to 1.35) for paternal smoking, 1.62 (95% CI 1.38 to 1.89) if both parents smoked, and 1.54 (95% CI 1.40 to 1.69) for any household member smoking. Pre-natal maternal smoking (OR 1.24, 95% CI 1.11 to 1.38) had a weaker effect than post-natal smoking (OR 1.58, 95% CI 1.45 to 1.73). The strongest effect was on bronchiolitis, where the risk of any household smoking was increased by an OR of 2.51 (95% CI 1.96 to 3.21). Conclusions Passive smoking in the family home is a major influence on the risk of LRI in infants, and especially on bronchiolitis. Risk is particularly strong in relation to post-natal maternal smoking. Strategies to prevent passive smoke exposure in young children are an urgent public and child health priority.
Long-Term Exposure to Primary Traffic Pollutants and Lung Function in Children: Cross-Sectional Study and Meta-Analysis
There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.
Comparison of mortality in people with type 2 diabetes between different ethnic groups: Systematic review and meta-analysis of longitudinal studies
Type 2 diabetes (T2D) is more common in certain ethnic groups. This systematic review compares mortality risk between people with T2D from different ethnic groups and includes recent larger studies. We searched nine databases using PRISMA guidelines (PROSPERO CRD42022372542). We included community-based prospective studies among adults with T2D from at least two different ethnicities. Two independent reviewers undertook screening, data extraction and quality assessment using the Newcastle-Ottawa Scale. The primary outcome compared all-cause mortality rates between ethnic groups (hazard ratio (HR) with 95% confidence intervals). From 30,825 searched records, we included 13 studies (7 meta-analysed), incorporating 573,173 T2D participants; 12 were good quality. Mortality risk was lower amongst people with T2D from South Asian [HR 0.68 (0.65-0.72)], Black [HR 0.82 (0.77-0.87)] and Chinese [HR 0.57 (0.46-0.70)] ethnicity compared to people of White ethnicity. Narrative synthesis corroborated these findings but demonstrated that people of indigenous Māori ethnicity had greater mortality risk compared to European ethnicity. People with T2D of South Asian, Black and Chinese ethnicity have lower all-cause mortality risk than White ethnicity, with Māori ethnicity having higher mortality risk. Factors explaining mortality differences require further study, including understanding complication risk by ethnicity, to improve diabetes outcomes.
Long-Term Exposure to Outdoor Air Pollution and Incidence of Cardiovascular Diseases
Background: Evidence based largely on US cohorts suggests that long-term exposure to fine particulate matter is associated with cardiovascular mortality. There is less evidence for other pollutants and for cardiovascular morbidity. By using a cohort of 836,557 patients age 40 to 89 years registered with 205 English general practices in 2003, we investigated relationships between ambient outdoor air pollution and incident myocardial infarction, stroke, arrhythmia, and heart failure over a 5-year period. Methods: Events were identified from primary care records, hospital admissions, and death certificates. Annual average concentrations in 2002 for particulate matter with a median aerodynamic diameter <10 (PM₁₀) and <2.5 microns, nitrogen dioxide (NO₂), ozone, and sulfur dioxide at a 1 × 1 km resolution were derived from emission-based models and linked to residential postcode. Analyses were performed using Cox proportional hazards models adjusting for relevant confounders, including social and economic deprivation and smoking. Results: While evidence was weak for relationships with myocardial infarction, stroke, or arrhythmia, we found consistent associations between pollutant concentrations and incident cases of heart failure. An interquartile range change in PM₁₀ and in NO₂ (3.0 and 10.7 μm³, respectively) both produced a hazard ratio of 1.06 (95% confidence interval = 1.01-1.11) after adjustment for confounders. There was some evidence that these effects were greater in more affluent areas. Conclusions: This study of an English national cohort found evidence linking long-term exposure to particulate matter and NO₂ with the development of heart failure. We did not, however, replicate associations for other cardiovascular outcomes that have been reported elsewhere.
Risk factors for excess all-cause mortality during the first wave of the COVID-19 pandemic in England: A retrospective cohort study of primary care data
The COVID-19 pandemic's first wave in England during spring 2020 resulted in an approximate 50% increase in all-cause mortality. Previously, risk factors such as age and ethnicity, were identified by studying COVID-related deaths only, but these were under-recorded during this period. To use a large electronic primary care database to estimate the impact of risk factors (RFs) on excess mortality in England during the first wave, compared with the impact on total mortality during 2015-19. Medical history, ethnicity, area-based deprivation and vital status data were extracted for an average of 4.8 million patients aged 30-104 years, for each year between 18-March and 19-May over a 6-year period (2015-2020). We used Poisson regression to model total mortality adjusting for age and sex, with interactions between each RF and period (pandemic vs. 2015-19). Total mortality during the pandemic was partitioned into \"usual\" and \"excess\" components, assuming 2015-19 rates represented \"usual\" mortality. The association of each RF with the 2020 \"excess\" component was derived as the excess mortality ratio (EMR), and compared with the usual mortality ratio (UMR). RFs where excess mortality was greatest and notably higher than usual were age >80, non-white ethnicity (e.g., black vs. white EMR = 2.50, 95%CI 1.97-3.18; compared to UMR = 0.92, 95%CI 0.85-1.00), BMI>40, dementia, learning disability, severe mental illness, place of residence (London, care-home, most deprived). By contrast, EMRs were comparable to UMRs for sex. Although some co-morbidities such as cancer produced EMRs significantly below their UMRs, the EMRs were still >1. In contrast current smoking has an EMR below 1 (EMR = 0.80, 95%CI 0.65-0.98) compared to its UMR = 1.64. Studying risk factors for excess mortality during the pandemic highlighted differences from studying cause-specific mortality. Our approach illustrates a novel methodology for evaluating a pandemic's impact by individual risk factor without requiring cause-specific mortality data.
Physical activity levels in adults and older adults 3–4 years after pedometer-based walking interventions: Long-term follow-up of participants from two randomised controlled trials in UK primary care
Physical inactivity is an important cause of noncommunicable diseases. Interventions can increase short-term physical activity (PA), but health benefits require maintenance. Few interventions have evaluated PA objectively beyond 12 months. We followed up two pedometer interventions with positive 12-month effects to examine objective PA levels at 3-4 years. Long-term follow-up of two completed trials: Pedometer And Consultation Evaluation-UP (PACE-UP) 3-arm (postal, nurse support, control) at 3 years and Pedometer Accelerometer Consultation Evaluation-Lift (PACE-Lift) 2-arm (nurse support, control) at 4 years post-baseline. Randomly selected patients from 10 United Kingdom primary care practices were recruited (PACE-UP: 45-75 years, PACE-Lift: 60-75 years). Intervention arms received 12-week walking programmes (pedometer, handbooks, PA diaries) postally (PACE-UP) or with nurse support (PACE-UP, PACE-Lift). Main outcomes were changes in 7-day accelerometer average daily step counts and weekly time in moderate-to-vigorous PA (MVPA) in ≥10-minute bouts in intervention versus control groups, between baseline and 3 years (PACE-UP) and 4 years (PACE-Lift). PACE-UP 3-year follow-up was 67% (681/1,023) (mean age: 59, 64% female), and PACE-Lift 4-year follow-up was 76% (225/298) (mean age: 67, 53% female). PACE-UP 3-year intervention versus control comparisons were as follows: additional steps/day postal +627 (95% CI: 198-1,056), p = 0.004, nurse +670 (95% CI: 237-1,102), p = 0.002; total weekly MVPA in bouts (minutes/week) postal +28 (95% CI: 7-49), p = 0.009, nurse +24 (95% CI: 3-45), p = 0.03. PACE-Lift 4-year intervention versus control comparisons were: +407 (95% CI: -177-992), p = 0.17 steps/day, and +32 (95% CI: 5-60), p = 0.02 minutes/week MVPA in bouts. Neither trial showed sedentary or wear-time differences. Main study limitation was incomplete follow-up; however, results were robust to missing data sensitivity analyses. Intervention participants followed up from both trials demonstrated higher levels of objectively measured PA at 3-4 years than controls, similar to previously reported 12-month trial effects. Pedometer interventions, delivered by post or with nurse support, can help address the public health physical inactivity challenge. PACE-UP isrctn.com ISRCTN98538934; PACE-Lift isrctn.com ISRCTN42122561.
A Primary Care Nurse-Delivered Walking Intervention in Older Adults: PACE (Pedometer Accelerometer Consultation Evaluation)-Lift Cluster Randomised Controlled Trial
Brisk walking in older people can increase step-counts and moderate to vigorous intensity physical activity (MVPA) in ≥10-minute bouts, as advised in World Health Organization guidelines. Previous interventions have reported step-count increases, but not change in objectively measured MVPA in older people. We assessed whether a primary care nurse-delivered complex intervention increased objectively measured step-counts and MVPA. A total of 988 60-75 year olds, able to increase walking and randomly selected from three UK family practices, were invited to participate in a parallel two-arm cluster randomised trial; randomisation was by household. Two-hundred-ninety-eight people from 250 households were randomised between 2011 and 2012; 150 individuals to the intervention group, 148 to the usual care control group. Intervention participants received four primary care nurse physical activity (PA) consultations over 3 months, incorporating behaviour change techniques, pedometer step-count and accelerometer PA intensity feedback, and an individual PA diary and plan. Assessors were not blinded to group status, but statistical analyses were conducted blind. The primary outcome was change in accelerometry assessed average daily step-counts between baseline and 3 months, with change at 12 months a secondary outcome. Other secondary outcomes were change from baseline in time in MVPA weekly in ≥10-minute bouts, accelerometer counts, and counts/minute at 3 months and 12 months. Other outcomes were adverse events, anthropometric measures, mood, and pain. Qualitative evaluations of intervention participants and practice nurses assessed the intervention's acceptability. At 3 months, eight participants had withdrawn or were lost to follow-up, 280 (94%) individuals provided primary outcome data. At 3 months changes in both average daily step-counts and weekly MVPA in ≥10-minute bouts were significantly higher in the intervention than control group: by 1,037 (95% CI 513-1,560) steps/day and 63 (95% CI 40-87) minutes/week, respectively. At 12 months corresponding differences were 609 (95% CI 104-1,115) steps/day and 40 (95% CI 17-63) minutes/week. Counts and counts/minute showed similar effects to steps and MVPA. Adverse events, anthropometry, mood, and pain were similar in the two groups. Participants and practice nurses found the intervention acceptable and enjoyable. The PACE-Lift trial increased both step-counts and objectively measured MVPA in ≥10-minute bouts in 60-75 year olds at 3 and 12 months, with no effect on adverse events. To our knowledge, this is the first trial in this age group to demonstrate objective MVPA increases and highlights the value of individualised support incorporating objective PA assessment in a primary care setting. Controlled-Trials.com ISRCTN42122561.