Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
319
result(s) for
"Cook, Gregory M."
Sort by:
Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia
2010
Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive under low energy conditions and hypoxia.
Journal Article
Diverse hydrogen production and consumption pathways influence methane production in ruminants
by
Leahy, Sinead C.
,
Cook, Gregory M.
,
Morales, Sergio E.
in
38/39
,
631/326/2565/2142
,
631/45/500
2019
Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H
2
), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H
2
metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H
2
production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g.,
Ruminococcus
) accounted for half of all hydrogenase transcripts. Various H
2
uptake pathways were also expressed, including methanogenesis (
Methanobrevibacter
), fumarate and nitrite reduction (
Selenomonas
), and acetogenesis (
Blautia
). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter
Ruminococcus albus
and the hydrogenotrophic fumarate reducer
Wolinella succinogenes
in co-culture compared with pure culture. We conclude that H
2
metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H
2
. These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H
2
uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.
Journal Article
The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis
2023
The increasing incidence of drug resistance in
Mycobacterium tuberculosis
has diminished the efficacy of almost all available antibiotics, complicating efforts to combat the spread of this global health burden. Alongside the development of new drugs, optimised drug combinations are needed to improve treatment success and prevent the further spread of antibiotic resistance. Typically, antibiotic resistance leads to reduced sensitivity, yet in some cases the evolution of drug resistance can lead to enhanced sensitivity to unrelated drugs. This phenomenon of collateral sensitivity is largely unexplored in
M. tuberculosis
but has the potential to identify alternative therapeutic strategies to combat drug-resistant strains that are unresponsive to current treatments. Here, by using drug susceptibility profiling, genomics and evolutionary studies we provide evidence for the existence of collateral drug sensitivities in an isogenic collection
M. tuberculosis
drug-resistant strains. Furthermore, in proof-of-concept studies, we demonstrate how collateral drug phenotypes can be exploited to select against and prevent the emergence of drug-resistant strains. This study highlights that the evolution of drug resistance in
M. tuberculosis
leads to collateral drug responses that can be exploited to design improved drug regimens.
Here using drug susceptibility profiling, genomics and evolutionary studies the authors provide strategies to exploit collateral drug responses in
Mycobacterium tuberculosis
to prevent the emergence of drug resistance.
Journal Article
A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent NiFe hydrogenases
by
Michael Berney
,
Kiel Hards
,
Chris Greening
in
Atmosphere - chemistry
,
Biological Sciences
,
Chromatography, Gas
2014
In the Earth's lower atmosphere, H2 is maintained at trace concentrations (0.53 ppmv/0.40 nM) and rapidly turned over (lifetime ≤ 2.1 y(-1)). It is thought that soil microbes, likely actinomycetes, serve as the main global sink for tropospheric H2. However, no study has ever unambiguously proven that a hydrogenase can oxidize this trace gas. In this work, we demonstrate, by using genetic dissection and sensitive GC measurements, that the soil actinomycete Mycobacterium smegmatis mc(2)155 constitutively oxidizes subtropospheric concentrations of H2. We show that two membrane-associated, oxygen-dependent [NiFe] hydrogenases mediate this process. Hydrogenase-1 (Hyd1) (MSMEG_2262-2263) is well-adapted to rapidly oxidize H2 at a range of concentrations [Vmax(app) = 12 nmol⋅g⋅dw(-1)⋅min(-1); Km(app) = 180 nM; threshold = 130 pM in the Δhyd23 (Hyd1 only) strain], whereas Hyd2 (MSMEG_2719-2720) catalyzes a slower-acting, higher-affinity process [Vmax(app) = 2.5 nmol⋅g⋅dw(-1)⋅min(-1); Km(app) = 50 nM; threshold = 50 pM in the Δhyd13 (Hyd2 only) strain]. These observations strongly support previous studies that have linked group 5 [NiFe] hydrogenases (e.g., Hyd2) to the oxidation of tropospheric H2 in soil ecosystems. We further reveal that group 2a [NiFe] hydrogenases (e.g., Hyd1) can contribute to this process. Hydrogenase expression and activity increases in carbon-limited cells, suggesting that scavenging of trace H2 helps to sustain dormancy. Distinct physiological roles for Hyd1 and Hyd2 during the adaptation to this condition are proposed. Soil organisms harboring high-affinity hydrogenases may be especially competitive, given that they harness a highly dependable fuel source in otherwise unstable environments.
Journal Article
Ionophoric effects of the antitubercular drug bedaquiline
by
Cook, Gregory M.
,
McMillan, Duncan G. G.
,
Gennis, Robert B.
in
Adenosine Triphosphate - biosynthesis
,
Antimicrobial agents
,
Antitubercular Agents - pharmacology
2018
Bedaquiline (BDQ), an inhibitor of the mycobacterial F₁Fₒ-ATP synthase, has revolutionized the antitubercular drug discovery program by defining energy metabolism as a potent new target space. Several studies have recently suggested that BDQ ultimately causes mycobacterial cell death through a phenomenon known as uncoupling. The biochemical basis underlying this, in BDQ, is unresolved and may represent a new pathway to the development of effective therapeutics. In this communication, we demonstrate that BDQ can inhibit ATP synthesis in Escherichia coli by functioning as a H⁺/K⁺ ionophore, causing transmembrane pH and potassium gradients to be equilibrated. Despite the apparent lack of a BDQ-binding site, incorporating the E. coli Fₒ subunit into liposomes enhanced the ionophoric activity of BDQ. We discuss the possibility that localization of BDQ at F₁Fₒ-ATP synthases enables BDQ to create an uncoupled microenvironment, by antiporting H⁺/K⁺. Ionophoric properties may be desirable in high-affinity antimicrobials targeting integral membrane proteins.
Journal Article
Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis
2022
New drugs are urgently required to combat the tuberculosis epidemic that claims 1.5 million lives annually. Inhibitors of mycobacterial energy metabolism have shown significant promise clinically; however, further advancing this nascent target space requires a more fundamental understanding of the respiratory enzymes and pathways used by Mycobacterium tuberculosis . Succinate is a major focal point in mycobacterial metabolism and respiration, serving as both an intermediate of the tricarboxylic acid (TCA) cycle and a direct electron donor for the respiratory chain. Mycobacterium tuberculosis encodes multiple enzymes predicted to be capable of catalyzing the oxidation of succinate to fumarate, including two different succinate dehydrogenases (Sdh1 and Sdh2) and a separate fumarate reductase (Frd) with possible bidirectional behavior. Previous attempts to investigate the essentiality of succinate oxidation in M. tuberculosis have relied on the use of single-gene deletion mutants, raising the possibility that the remaining enzymes could catalyze succinate oxidation in the absence of the other. To address this, we report on the use of mycobacterial CRISPR interference (CRISPRi) to construct single, double, and triple transcriptional knockdowns of sdhA1 , sdhA2 , and frdA in M. tuberculosis . We show that the simultaneous knockdown of sdhA1 and sdhA2 is required to prevent succinate oxidation and overcome the functional redundancy within these enzymes. Succinate oxidation was demonstrated to be essential for the optimal growth of M. tuberculosis , with the combined knockdown of sdhA1 and sdhA2 significantly impairing the activity of the respiratory chain and preventing growth on a range of carbon sources. Moreover, impaired succinate oxidation was shown to influence the activity of cell wall-targeting antibiotics and bioenergetic inhibitors against M. tuberculosis . Together, these data provide fundamental insights into mycobacterial physiology, energy metabolism, and antimicrobial susceptibility. IMPORTANCE New drugs are urgently required to combat the tuberculosis epidemic that claims 1.5 million lives annually. Inhibitors of mycobacterial energy metabolism have shown significant promise clinically; however, further advancing this nascent target space requires a more fundamental understanding of the respiratory enzymes and pathways used by Mycobacterium tuberculosis . Succinate is a major focal point in mycobacterial metabolism and respiration; yet, the essentiality of succinate oxidation and the consequences of inhibiting this process are poorly defined. In this study, we demonstrate that impaired succinate oxidation prevents the optimal growth of M. tuberculosis on a range of carbon sources and significantly reduces the activity of the electron transport chain. Moreover, we show that impaired succinate oxidation both positively and negatively influences the activity of a variety of antituberculosis drugs. Combined, these findings provide fundamental insights into mycobacterial physiology and drug susceptibility that will be useful in the continued development of bioenergetic inhibitors.
Journal Article
obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia
by
Cook, Gregory M.
,
Berney, Michael
,
Jacob, William R.
in
aerobes
,
Aerobic bacteria
,
Aerobic respiration
2014
Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis , adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H ₂ when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD ⁺/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.
Journal Article
Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering
by
Forde, Brian M.
,
Cook, Gregory M.
,
Ahmed, F. Hafna
in
Analysis
,
Antibiotic resistance
,
Antibiotics
2020
Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.
Journal Article
Remission spectroscopy resolves the mechanism of action of bedaquiline within living mycobacteria
by
Cook, Gregory M.
,
Osman, Morwan M.
,
Cheung, Chen-Yi
in
631/1647/2234
,
631/326/1320
,
631/326/22/1290
2025
Bedaquiline, an ATP synthase inhibitor, is the spearhead of transformative therapies against drug-resistant
Mycobacterium tuberculosis
. Here, we use remission spectroscopy to measure the energy-transducing cytochromes within unperturbed, respiring suspensions of mycobacterial and human cells, allowing spectroscopic measurements of electron transport chains as they power living cells and respond to bedaquiline. No evidence is found for protonophoric or ionophoric uncoupling. Rather, by directly inhibiting ATP synthase, bedaquiline slows the respiratory supercomplex (Qcr:Cta;
bcc
:
aa
3
) by increasing the proton-motive force, causing sub-second redirection of electron flux through the cytochrome
bd
oxidase (CydAB) to O
2
. Electron flux redirection explains the idiosyncratic bedaquiline-induced increase in O
2
consumption rates previously observed. Redirection occurs as CydAB is present even in cells grown in plentiful O
2
. Applying the same approach to human cells did not detect bedaquiline-induced inhibition of mitochondrial function despite such inhibition being seen in isolated systems. Overall, we clarify how bedaquiline works, why different models for its action developed, and the mechanisms underlying the synergy of bedaquiline in combination regimes.
The anti-tuberculosis drug bedaquiline targets ATP synthase, but there is controversy about the precise mechanisms leading to mycobacterial death. Here, the authors show that the apparent ‘uncoupling’ activity of bedaquiline is, in fact, a redirection of electron flux to the CydAB oxidase, induced to mitigate the deleterious consequences of ATP synthase inhibition.
Journal Article
Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection
2019
A major constraint for developing new anti-tuberculosis drugs is the limited number of validated targets that allow eradication of persistent infections. Here, we uncover a vulnerable component of
Mycobacterium tuberculosis (Mtb)
persistence metabolism, the aspartate pathway. Rapid death of threonine and homoserine auxotrophs points to a distinct susceptibility of
Mtb
to inhibition of this pathway. Combinatorial metabolomic and transcriptomic analysis reveals that inability to produce threonine leads to deregulation of aspartate kinase, causing flux imbalance and lysine and DAP accumulation.
Mtb’s
adaptive response to this metabolic stress involves a relief valve-like mechanism combining lysine export and catabolism via aminoadipate. We present evidence that inhibition of the aspartate pathway at different branch-point enzymes leads to clearance of chronic infections. Together these findings demonstrate that the aspartate pathway in
Mtb
relies on a combination of metabolic control mechanisms, is required for persistence, and represents a target space for anti-tuberculosis drug development.
Amino acid biosynthetic pathways are an attractive alternative to treat chronic infections such as
Mycobacterium tuberculosis
(Mtb). Here, the authors investigate the metabolic response to disruption of the aspartate pathway in persistent Mtb and identify essential enzymes as potential new targets for drug development.
Journal Article