Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Coole, Jackson"
Sort by:
DeepDOF-SE: affordable deep-learning microscopy platform for slide-free histology
Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings. Histopathology can be limited by the time-consuming and labour-intensive preparation of slides from resected tissue. Here, the authors report DeepDOF-SE, a deep-learning-enabled microscope to rapidly scan intact tissue at cellular resolution without the need for physical sectioning.
Deep learning extended depth-of-field microscope for fast and slide-free histology
Microscopic evaluation of resected tissue plays a central role in the surgical management of cancer. Because optical microscopes have a limited depth-of-field (DOF), resected tissue is either frozen or preserved with chemical fixatives, sliced into thin sections placed on microscope slides, stained, and imaged to determine whether surgical margins are free of tumor cells—a costly and time- and labor-intensive procedure. Here, we introduce a deep-learning extended DOF (DeepDOF) microscope to quickly image large areas of freshly resected tissue to provide histologic-quality images of surgical margins without physical sectioning. The DeepDOF microscope consists of a conventional fluorescence microscope with the simple addition of an inexpensive (less than $10) phase mask inserted in the pupil plane to encode the light field and enhance the depth-invariance of the point-spread function. When used with a jointly optimized image-reconstruction algorithm, diffraction-limited optical performance to resolve subcellular features can be maintained while significantly extending the DOF (200 μm). Data from resected oral surgical specimens show that the DeepDOF microscope can consistently visualize nuclear morphology and other important diagnostic features across highly irregular resected tissue surfaces without serial refocusing. With the capability to quickly scan intact samples with subcellular detail, the DeepDOF microscope can improve tissue sampling during intraoperative tumor-margin assessment, while offering an affordable tool to provide histological information from resected tissue specimens in resource-limited settings.
Multimodal optical imaging with real-time projection of cancer risk and biopsy guidance maps for early oral cancer diagnosis and treatment
Despite recent advances in multimodal optical imaging, oral imaging systems often do not provide real-time actionable guidance to the clinician who is making biopsy and treatment decisions. We demonstrate a low-cost, portable active biopsy guidance system (ABGS) that uses multimodal optical imaging with deep learning to directly project cancer risk and biopsy guidance maps onto oral mucosa in real time. Cancer risk maps are generated based on widefield autofluorescence images and projected onto the at-risk tissue using a digital light projector. Microendoscopy images are obtained from at-risk areas, and multimodal image data are used to calculate a biopsy guidance map, which is projected onto tissue. Representative patient examples highlight clinically actionable visualizations provided in real time during an imaging procedure. Results show multimodal imaging with cancer risk and biopsy guidance map projection offers a versatile, quantitative, and precise tool to guide biopsy site selection and improve early detection of oral cancers. The ABGS provides direct visible guidance to identify early lesions and locate appropriate sites to biopsy within those lesions. This represents an opportunity to translate multimodal imaging into real-time clinically actionable visualizations to help improve patient outcomes.
Deployment and assessment of a deep learning model for real-time detection of anal precancer with high frame rate high-resolution microendoscopy
Anal cancer incidence is significantly higher in people living with HIV as HIV increases the oncogenic potential of human papillomavirus. The incidence of anal cancer in the United States has recently increased, with diagnosis and treatment hampered by high loss-to-follow-up rates. Novel methods for the automated, real-time diagnosis of AIN 2+ could enable \"see and treat\" strategies, reducing loss-to-follow-up rates. A previous retrospective study demonstrated that the accuracy of a high-resolution microendoscope (HRME) coupled with a deep learning model was comparable to expert clinical impression for diagnosis of AIN 2+ (sensitivity 0.92 [P = 0.68] and specificity 0.60 [P = 0.48]). However, motion artifacts and noise led to many images failing quality control (17%). Here, we present a high frame rate HRME (HF-HRME) with improved image quality, deployed in the clinic alongside a deep learning model and evaluated prospectively for detection of AIN 2+ in real-time. The HF-HRME reduced the fraction of images failing quality control to 4.6% by employing a high frame rate camera that enhances contrast and limits motion artifacts. The HF-HRME outperformed the previous HRME (P < 0.001) and clinical impression (P < 0.0001) in the detection of histopathologically confirmed AIN 2+ with a sensitivity of 0.91 and specificity of 0.87.
Integrating Multimodal Optical Imaging Systems for Interactive Clinician Guidance for Cancer Detection and Resection
The gold standard for cancer diagnosis is invasive biopsy and subsequent pathologic diagnosis to identify the presence and grade of dysplasia. Unfortunately, most medical practitioners lack expertise to distinguish true precancerous lesions and early cancers from the more common benign confounders. While the potential of optical imaging to delineate areas containing high-grade dysplasia has been demonstrated, previous implementations have lacked the ability to guide provider actions in real time. However, recent advances in optical sensor technology, digital light projectors, and deep learning frameworks provide an opportunity to incorporate real-time interactive clinician guidance with multimodal optical imaging in ways that were not previously possible. The goal of my dissertation research is to develop a multimodal optical imaging system that provides active guidance to clinicians to improve the early detection and complete surgical removal of cancerous lesions. I demonstrated the promise of this approach for two different clinical applications, including: 1) developing a Multimodal Mobile Colposcope (MMC) for interactive biopsy guidance in cervical precancers; and 2) Developing a low-cost Active Biopsy Guidance System (ABGS) for interactive biopsy guidance in oral precancers.