Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Cornish, Toby"
Sort by:
A Critical Evaluation of microRNA Biomarkers in Non-Neoplastic Disease
MicroRNAs (miRNAs) are small (∼22-nt), stable RNAs that critically modulate post-transcriptional gene regulation. MicroRNAs can be found in the blood as components of serum, plasma and peripheral blood mononuclear cells (PBMCs). Many microRNAs have been reported to be specific biomarkers in a variety of non-neoplastic diseases. To date, no one has globally evaluated these proposed clinical biomarkers for general quality or disease specificity. We hypothesized that the cellular source of circulating microRNAs should correlate with cells involved in specific non-neoplastic disease processes. Appropriate cell expression data would inform on the quality and usefulness of each microRNA as a biomarker for specific diseases. We further hypothesized a useful clinical microRNA biomarker would have specificity to a single disease. We identified 416 microRNA biomarkers, of which 192 were unique, in 104 publications covering 57 diseases. One hundred and thirty-nine microRNAs (33%) represented biologically plausible biomarkers, corresponding to non-ubiquitous microRNAs expressed in disease-appropriate cell types. However, at a global level, many of these microRNAs were reported as \"specific\" biomarkers for two or more unrelated diseases with 6 microRNAs (miR-21, miR-16, miR-146a, miR-155, miR-126 and miR-223) being reported as biomarkers for 9 or more distinct diseases. Other biomarkers corresponded to common patterns of cellular injury, such as the liver-specific microRNA, miR-122, which was elevated in a disparate set of diseases that injure the liver primarily or secondarily including hepatitis B, hepatitis C, sepsis, and myocardial infarction. Only a subset of reported blood-based microRNA biomarkers have specificity for a particular disease. The remainder of the reported non-neoplastic biomarkers are either biologically implausible, non-specific, or uninterpretable due to limitations of our current understanding of microRNA expression.
Artificial intelligence for automating the measurement of histologic image biomarkers
Artificial intelligence has been applied to histopathology for decades, but the recent increase in interest is attributable to well-publicized successes in the application of deep-learning techniques, such as convolutional neural networks, for image analysis. Recently, generative adversarial networks (GANs) have provided a method for performing image-to-image translation tasks on histopathology images, including image segmentation. In this issue of the JCI, Koyuncu et al. applied GANs to whole-slide images of p16-positive oropharyngeal squamous cell carcinoma (OPSCC) to automate the calculation of a multinucleation index (MuNI) for prognostication in p16-positive OPSCC. Multivariable analysis showed that the MuNI was prognostic for disease-free survival, overall survival, and metastasis-free survival. These results are promising, as they present a prognostic method for p16-positive OPSCC and highlight methods for using deep learning to measure image biomarkers from histopathologic samples in an inherently explainable manner.
Artificial intelligence for automating the measurement of histologic image biomarkers
Artificial intelligence has been applied to histopathology for decades, but the recent increase in interest is attributable to well-publicized successes in the application of deep-learning techniques, such as convolutional neural networks, for image analysis. Recently, generative adversarial networks (GANs) have provided a method for performing image-to-image translation tasks on histopathology images, including image segmentation. In this issue of the JCI, Koyuncu et al. applied GANs to whole-slide images of p16-positive oropharyngeal squamous cell carcinoma (OPSCC) to automate the calculation of a multinucleation index (MuNI) for prognostication in p16-positive OPSCC. Multivariable analysis showed that the MuNI was prognostic for disease-free survival, overall survival, and metastasis-free survival. These results are promising, as they present a prognostic method for p16-positive OPSCC and highlight methods for using deep learning to measure image biomarkers from histopathologic samples in an inherently explainable manner.
CODA: quantitative 3D reconstruction of large tissues at cellular resolution
A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA’s ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture. CODA: a method for 3D reconstruction of large serially sectioned tissues.
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency
Persons with mismatch repair–deficient tumors are more likely than persons with mismatch repair–proficient tumors to benefit from pembrolizumab — which augments T-cell effector function — probably because mismatch repair–deficient tumors express many more neoantigens. The programmed death 1 (PD-1) pathway is a negative feedback system that represses Th1 cytotoxic immune responses and that, if unregulated, can damage the host. 1 – 3 It is up-regulated in many tumors and in their surrounding microenvironment. Blockade of this pathway with antibodies to PD-1 or its ligands has led to remarkable clinical responses in patients with many different types of cancer, including melanomas, non–small-cell lung cancer, renal-cell carcinoma, bladder cancer, and Hodgkin’s lymphoma. 4 – 10 The expression of PD-1 ligands (PD-L1 or PD-L2) on the surface of tumor cells or immune cells is an important — but not a definitive . . .
miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy
Small RNA RNA-seq for microRNAs (miRNAs) is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM). Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA) are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench), miRge was faster (4 to 32-fold) and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.
Metastatic progression is associated with dynamic changes in the local microenvironment
Most cancer-associated deaths result from metastasis. However, it remains unknown whether the size, microenvironment or other features of a metastatic lesion dictate its behaviour or determine the efficacy of chemotherapy in the adjuvant (micrometastatic) setting. Here we delineate the natural history of metastasis in an autochthonous model of pancreatic ductal adenocarcinoma (PDAC), using lineage tracing to examine the evolution of disseminated cancer cells and their associated microenvironment. With increasing size, lesions shift from mesenchymal to epithelial histology, become hypovascular and accumulate a desmoplastic stroma, ultimately recapitulating the primary tumours from which they arose. Moreover, treatment with gemcitabine and nab-paclitaxel significantly reduces the overall number of metastases by inducing cell death in lesions of all sizes, challenging the paradigm that PDAC stroma imposes a critical barrier to drug delivery. These results illuminate the cellular dynamics of metastatic progression and suggest that adjuvant chemotherapy affords a survival benefit by directly targeting micrometastases. Metastatic colonization—the growth of single metastatic cells or small lesions into gross metastases—is poorly understood. Here, the authors characterize the natural history of metastatic growth and assess the impact of chemotherapy in an autochthonous model of pancreatic cancer.
US Food and Drug Administration Approval of Whole Slide Imaging for Primary Diagnosis: A Key Milestone Is Reached and New Questions Are Raised
April 12, 2017 marked a significant day in the evolution of digital pathology in the United States, when the US Food and Drug Administration announced its approval of the Philips IntelliSite Pathology Solution for primary diagnosis in surgical pathology. Although this event is expected to facilitate more widespread adoption of whole slide imaging for clinical applications in the United States, it also raises a number of questions as to the means by which pathologists might choose to incorporate this technology into their clinical practice. This article from the College of American Pathologists Digital Pathology Committee reviews frequently asked questions on this topic and provides answers based on currently available information.
3D genomic mapping reveals multifocality of human pancreatic precancers
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study 1 . Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm 3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer. Quantitative multimodal 3D reconstruction of human pancreatic tissue at single-cell resolution reveals a high burden of multifocal, genetically heterogeneous pancreatic intraepithelial neoplasias in the normal adult pancreas.