Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Corrà, Barbara"
Sort by:
The role of clinical and neuroimaging features in the diagnosis of CADASIL
by
Bassi, Maria Teresa
,
Candelise, Livia
,
Trobia, Nadia
in
Atrophy
,
Dementia disorders
,
Diagnosis
2018
BackgroundCerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common familial cerebral small vessel disease, caused by NOTCH3 gene mutations. The aim of our study was to identify clinical and neuroradiological features which would be useful in identifying which patients presenting with lacunar stroke and TIA are likely to have CADASIL.MethodsPatients with lacunar stroke or TIA were included in the present study. For each patient, demographic and clinical data were collected. MRI images were centrally analysed for the presence of lacunar infarcts, microbleeds, temporal lobe involvement, global atrophy and white matter hyperintensities.Results128 patients (mean age 56.3 ± 12.4 years) were included. A NOTCH3 mutation was found in 12.5% of them. A family history of stroke, the presence of dementia and external capsule lesions on MRI were the only features significantly associated with the diagnosis of CADASIL. Although thalamic, temporal pole gliosis and severe white matter hyperintensities were less specific for CADASIL diagnosis, the combination of a number of these factors together with familial history for stroke result in a higher positive predictive value and specificity.ConclusionsA careful familial history collection and neuroradiological assessment can identify patients in whom NOTCH3 genetic testing has a higher yield.
Journal Article
Vaccination for SARS-CoV-2 in Patients With Psoriatic Arthritis: Can Therapy Affect the Immunological Response?
by
Grossi, Valentina
,
Infantino, Maria
,
Mariotti, Elena Biancamaria
in
biologics
,
BNT162b2
,
DMARDs
2022
A few studies on vaccination in patients with rheumatic diseases, including arthritis, connective tissue diseases, vasculitis, and psoriatic arthropathy (PsA), demonstrated reduced production of neutralizing antibodies to SARS-CoV-2 Spike RBD (receptor-binding domain contained in the N-terminal of the S1 globular head region) when compared to the general population.
The aim of our study was to observe whether different therapies for PsA [methotrexate, anti-TNF antibodies, soluble TNF receptor (etanercept) or IL-17 inhibitors] have a different impact on SARS-CoV-2 vaccination in a homogeneous population of patients.
We enrolled 110 PsA patients in remission, assessed with Disease Activity in PSoriatic Arthritis (DAPSA). Of these: 63 were in treatment with anti-TNF-α therapy (26 etanercept, 15 certolizumab, 5 golimumab, 17 adalimumab); 37 with anti-IL17 secukinumab; 10 with methotrexate. All patients underwent vaccination for SARS-CoV-2 with mRNA BNT162b2 vaccine. Assessment of absolute and percentage lymphocyte subsets and anti-SARS-CoV-2 Spike RBD IgG antibody value 3 weeks after the second vaccine dose were performed. In addition, the serum antibody levels of 96 healthy healthcare workers (HCW) were analyzed.
The mean disease activity assessed with DAPSA score was 2.96 (SD = 0.60) with no significant differences between patients under different medications (
= 0.779). Median levels of neutralizing antibodies to SARS-CoV-2 Spike RBD were 928.00 binding antibody unit (BAU)/mL [IQR 329.25, 1632.0]; 1068.00 BAU/ml [IQR 475.00, 1632.00] in patients taking MTX, 846.00 BAU/ml [IQR 125.00, 1632.00] in patients taking etanercept, 908.00 BAU/mL [IQR 396.00, 1632.00] in patients taking anti-IL17 and 1148.00 BAU/ml [IQR 327.00, 1632.00] in patients taking TNF-α inhibitors, without statistically significant differences between these groups. Mean serum antibody level of HCW group was 1562.00 BAU/ml [IQR 975.00, 1632.00], being significantly higher than in the patient group (
= 0.000816). Absolute and percentage count of lymphocyte subsets were not statistically different between the subgroups under different treatments and when compared with HCW.
As for other rheumatic diseases on immunomodulatory treatment, our data showed a reduced humoral response in PsA patients compared to the control group. However, antibody response did not significantly differ between groups treated with different medications.
Journal Article
miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression
by
Musa, Gentian
,
Volpato, Stefano
,
Ferracin, Manuela
in
3' Untranslated Regions
,
Analysis
,
Binding Sites
2013
Background
The microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables.
Methods
MiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR.
Results
We identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer - as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs).
Conclusions
Taken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.
Journal Article
Human Health and Ocean Pollution
by
Landrigan, Philip J.
,
Rampal, Patrick
,
Stegeman, John J.
in
Abyssal zone
,
Acidification
,
Agricultural ecosystems
2020
Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood.
(1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health.
Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention.
Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths.
Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the
species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks.
Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants
to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that
infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale.
Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries.
World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Journal Article