Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Costa, Rúben D. F. S."
Sort by:
A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing
by
Sebbe, Naiara
,
Sales-Contini, Rita C. M.
,
Jesus, Abílio M. P.
in
Adhesion
,
Adhesives
,
Aeronautics
2023
Composite materials such as Fiber Metal Laminates (FMLs) have attracted the interest of the aerospace and automotive industries due to their high strength to weight ratio, but to use them as structures it is necessary to master the manufacturing and wiring techniques of these materials. Therefore, this paper aims to address and summarize the drilling and milling processes in FMLs based on a literature review of papers published from 2000 to 2023. Parameters used in multi-material manufacturing and machining such as drilling and milling, tool geometry, tool coating, lubricants and coolants published by researchers were analyzed, compared and discussed. Machining process parameters related to sustainability were also analyzed. A SWOT analysis was carried out and discussed to identify opportunities for improvement in the machining process. There are opportunities to develop the surface treatment of aluminum alloys, such as testing other combinations than those already used, testing non-traditional surface treatments and manufacturing modes, and developing sustainable techniques during the FML manufacturing process. In the area of tooling, the opportunities are mainly related to coatings for tools and changing machining parameters to achieve an optimum finished part. Finally, to improve the sustainability of the process, it is necessary to test coated drills under cryogenic conditions to reduce the use of lubricants during the machining process.
Journal Article
Investigations on the Surface Integrity and Wear Mechanisms of TiAlYN-Coated Tools in Inconel 718 Milling Operations
by
Sebbe, Naiara P. V.
,
Sales-Contini, Rita C. M.
,
Barbosa, Marta L. S.
in
Abrasive wear
,
Aircraft
,
Built up edge
2024
Inconel 718 is a Ni superalloy with superior mechanical properties, even at high temperatures. However, due to its high hardness and low thermal conductivity, it is considered a difficult-to-machine material. This material is widely used in applications that require good dimensional stability, making the milling process the most used in machining this alloy. The wear resulting from this process and the quality of the machined surface are still challenging factors when it comes to Inconel 718. TiAlN-based coating has been used on cutting tools with Yttrium as a doping element to improve the process performance. Based on this, this work evaluated the machined surface integrity and wear resistance of cutting tools coated using Physical Vapor Deposition (PVD) HiPIMS with TiAlYN in the end milling of Inconel 718, varying the process parameters such as cutting speed (vc), feed per tooth (fz), and cutting length (Lcut). It was verified that the Lcut is the parameter that exerts the most significant influence since, even at small distances, Inconel 718 already generates high tool wear (TW). Furthermore, the main wear mechanisms were abrasive and adhesive wear, with the development of a built-up edge (BUE) under a125 m/min feed rate (f) and a Lcut = 15 m. Chipping, cracking, and delamination of the coating were also observed, indicating a lack of adhesion between the coating and the substrate, suggesting the need for a good interlayer or the adjustment of the PVD parameters.
Journal Article
Study of the Chlorine Influence on the Corrosion of Three Steels to Be Used in Water Treatment Municipal Facilities
2023
Many municipal facilities, such as pools and drinking water treatment facilities, are subject to ongoing maintenance due to the corrosion of their metallic materials caused by chlorine, leading to high costs and a possible risk to public health. A proper study of the employed product’s effect could lead to the use of better materials, which significantly increase the lifetime of metallic equipment more attacked by corrosion, through studies evaluating their cost-effectiveness. This paper was carried out with the objective of studying the degradation of some metallic materials (AISI 316L, AISI 321 and Duplex 14462) used in the referred facilities in order to select the one that possessed a better behavior. It was observed that the introduction of some more adequate materials can drastically reduce maintenance operations, with Duplex 14462 showing the best results, ideal for greater chlorine concentrations, followed by AISI 321, which may be employed for components in less contact with chlorine, since it is more easily affordable.
Journal Article
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
2023
Due to Inconel 718’s high mechanical properties, even at higher temperatures, tendency to work-harden, and low thermal conductivity, this alloy is considered hard to machine. The machining of this alloy causes high amounts of tool wear, leading to its premature failure. There seems to be a gap in the literature, particularly regarding milling and finishing operations applied to Inconel 718 parts. In the present study, the wear behavior of multilayered PVD HiPIMS (High-power impulse magnetron sputtering)-coated TiN/TiAlN end-mills used for finishing operations on Inconel 718 is evaluated, aiming to establish/expand the understanding of the wear behavior of coated tools when machining these alloys. Different machining parameters, such as cutting speed, cutting length, and feed per tooth, are tested, evaluating the influence of these parameters’ variations on tool wear. The sustained wear was evaluated using SEM (Scanning electron microscope) analysis, characterizing the tools’ wear and identifying the predominant wear mechanisms. The machined surface was also evaluated after each machining test, establishing a relationship between the tools’ wear and production quality. It was noticed that the feed rate parameter exerted the most influence on the tools’ production quality, while the cutting speed mostly impacted the tools’ wear. The main wear mechanisms identified were abrasion, material adhesion, cratering, and adhesive wear. The findings of this study might prove useful for future research conducted on this topic, either optimization studies or studies on the simulation of the milling of Inconel alloys, such as the one presented here.
Journal Article
Studying the Degradation of Three Polymers under Different Chlorine Concentrations and Exposure Times
by
Ferreira, Bruno O.
,
Pinto, Arnaldo G.
,
Sousa, Susana R.
in
Accelerated tests
,
Chemical elements
,
Chemical reactions
2023
Due to chlorine’s ability to kill bacteria and fungi through a chemical reaction, chlorine solutions are commonly used to clean and disinfect numerous public facilities, although these actions are also dependent to the equipment present in those facilities. Accordingly, the interest in studying its effect when in contact with different materials is obvious. This study was carried out through accelerated degradation tests and various analysis methods (optical microscope, scanning electron microscope, and tensile tests). The objective was to observe the wear presented by three polymeric materials, polyvinyl chloride (PVC), high-density polyethylene (HDPE), and polypropylene (PP), when exposed to chlorine’s action in swimming pools and drinking water treatment plants. The resulting effect depends on the chlorine content and the type of contact between the chemical agent and the material. The aim was to select the material less likely to be affected by chlorine through tests and analyses, allowing a longer component life. The use of certain more resistant polymeric materials can drastically reduce maintenance, reducing fundamental factors such as costs, the downtime of municipal facilities, and also the risk to public health. It was concluded that PVC has the most stable behaviour overall when in contact with chlorine solutions.
Journal Article
The Impact of the Deterioration on Wood by Chlorine: An Experimental Study
by
Ferreira, Bruno O.
,
Pinto, Arnaldo G.
,
Sousa, Susana R.
in
Analysis
,
Beech
,
Chemical elements
2023
The use of disinfection and cleaning chemicals in several municipal facilities, such as swimming pools and drinking water treatment plants, causes the degradation of various types of wood, which leads to failures in equipment and the corresponding need for maintenance. This degradation creates added costs for municipalities, as well as the closure of certain facilities due to curative or preventive maintenance and, in many cases, public health issues, due to the water being contaminated with deteriorating products. Through a thorough study of the degradation effect on the products, more resistant materials can be found which are able to withstand these adversities and increase the lifespan of wood in regular contact with chemical agents. This is achievable by the determination of the cost-effectiveness of the substitute material to replace these components with alternative ones, with properties that better resist the deterioration effects promoted by aggressive environments. No studies have been found so far strictly focused on this matter. The objective of this study is to evaluate the degradation presented by two types of wood, beech and oak, which are exposed to the action of chlorine in municipal facilities. This degradation varies according to the chlorine content and the materials’ time of contact with the chemical agent, allowing the selection of new materials which will provide an extended lifetime of the components, reducing maintenance drastically, as well as costs for the facilities and the risk to public health. The performed experimental tests have shown that the oak wood has the best results regarding chlorine degradation resistance.
Journal Article
A Concise Review on Materials for Injection Moulds and Their Conventional and Non-Conventional Machining Processes
by
Sebbe, Naiara P. V.
,
Sales-Contini, Rita C. M.
,
Nogueira, Francisca R.
in
Alloys
,
copper alloys
,
Corrosion
2024
Injection moulds are crucial to produce plastic and lightweight metal components. One primary associated challenge is that these may suffer from different types of failures, such as wear and/or cracking, due to the extreme temperatures (T), thermal cycles, and pressures involved in the production process. According to the intended geometry and respective needs, mould manufacturing can be performed with conventional or non-conventional processes. This work focuses on three foremost alloys: AMPCO® (CuBe alloy), INVAR-36® (Fe-Ni alloys, Fe-Ni36), and heat-treated (HT) steels. An insight into the manufacturing processes’ limitations of these kinds of materials will be made, and solutions for more effective machining will be presented by reviewing other published works from the last decade. The main objective is to provide a concise and comprehensive review of the most recent investigations of these alloys’ manufacturing processes and present the machinability challenges from other authors, discovering the prospects for future work and contributing to the endeavours of the injection mould industry. This review highlighted the imperative for more extensive research and development in targeted domains.
Journal Article
INCONEL® Alloy Machining and Tool Wear Finite Element Analysis Assessment: An Extended Review
by
Sebbe, Naiara P. V.
,
Sales-Contini, Rita C. M.
,
Barbosa, Marta L. S.
in
Alloys
,
Book publishing
,
Constitutive models
2024
Machining INCONEL® presents significant challenges in predicting its behaviour, and a comprehensive experimental assessment of its machinability is costly and unsustainable. Design of Experiments (DOE) can be conducted non-destructively through Finite Element Analysis (FEA). However, it is crucial to ascertain whether numerical and constitutive models can accurately predict INCONEL® machining. Therefore, a comprehensive review of FEA machining strategies is presented to systematically summarise and analyse the advancements in INCONEL® milling, turning, and drilling simulations through FEA from 2013 to 2023. Additionally, non-conventional manufacturing simulations are addressed. This review highlights the most recent modelling digital solutions, prospects, and limitations that researchers have proposed when tackling INCONEL® FEA machining. The genesis of this paper is owed to articles and books from diverse sources. Conducting simulations of INCONEL® machining through FEA can significantly enhance experimental analyses with the proper choice of damage and failure criteria. This approach not only enables a more precise calibration of parameters but also improves temperature (T) prediction during the machining process, accurate Tool Wear (TW) quantity and typology forecasts, and accurate surface quality assessment by evaluating Surface Roughness (SR) and the surface stress state. Additionally, it aids in making informed choices regarding the potential use of tool coatings.
Journal Article
Image Analysis Techniques Applied in the Drilling of a Carbon Fibre Reinforced Polymer and Aluminium Multi-Material to Assess the Delamination Damage
by
Durão, Luís M. P.
,
Sousa Costa, Rúben D. F.
,
Barbosa, Marta L. S.
in
Algorithms
,
Aluminum
,
Approximation
2024
Due to the high abrasiveness and anisotropic nature of composites, along with the need to machine different materials at the same time, drilling multi-materials is a difficult task, and usually results in material damage, such as uncut fibres and delamination, hindering hole functionality and reliability. Image processing and analysis algorithms can be developed to effectively assess such damage, allowing for the calculation of delamination factors essential to the quality control of hole inspection in composite materials. In this study, a digital image processing and analysis algorithm was developed in Python to perform the delamination evaluation of drilled holes on a carbon fibre reinforced polymer (CFRP) and aluminium (Al) multi-material. This algorithm was designed to overcome several limitations often found in other algorithms developed with similar purposes, which frequently lead to user mistakes and incorrect results. The new algorithm is easy to use and, without requiring manual pre-editing of the input images, is fully automatic, provides more complete and reliable results (such as the delamination factor), and is a free-of-charge software. For example, the delamination factors of two drilled holes were calculated using the new algorithm and one previously developed in Matlab. Using the previous Matlab algorithm, the delamination factors of the two holes were 1.380 and 2.563, respectively, and using the new Python algorithm, the results were equal to 3.957 and 3.383, respectively. The Python results were more trustworthy, as the first hole had a higher delamination area, so its factor should be higher than that of the second one.
Journal Article
Long-living and highly efficient bio-hybrid light-emitting diodes with zero-thermal-quenching biophosphors
by
Fernández-Blázquez, Juan P.
,
Lang, Martina
,
Espasa, Anna
in
639/301/1005/1007
,
639/301/1019/1020/1091
,
639/301/54/1754
2020
Bio-hybrid light-emitting diodes (Bio-HLEDs) based on color down-converting filters with fluorescent proteins (FPs) have achieved moderate efficiencies (50 lm/W) and stabilities (300 h) due to both thermal- and photo-degradation. Here, we present a significant enhancement in efficiency (
~
130 lm/W) and stability (>150 days) using a zero-thermal-quenching bio-phosphor design. This is achieved shielding the FP surface with a hydrophilic polymer allowing their homogenous integration into the network of a light-guiding and hydrophobic host polymer. We rationalize how the control of the mechanical and optical features of this bio-phosphor is paramount towards highly stable and efficient Bio-HLEDs, regardless of the operation conditions. This is validated by the relationships between the stiffness of the FP-polymer phosphor and the maximum temperature reached under device operation as well as the transmittance of the filters and device efficiency.
Bio-hybrid LEDs (HLED) are an environmental friendly alternative to LEDs based on inorganic phosphors but achieving long term is challenging. Here, the authors present a long-living Bio-HLED based on a zero-thermal-quenching biophosphor design and investigate the photo-induced heat generation and dissipation processes.
Journal Article