Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Coulet, France"
Sort by:
Cytotoxic Effects of Major and Emerging Mycotoxins on HepaRG Cells and Transcriptomic Response after Exposure of Spheroids to Enniatins B and B1
Mycotoxins, produced by fungi, frequently occur at different stages in the food supply chain between pre- and postharvest. Globally produced cereal crops are known to be highly susceptible to contamination, thus constituting a major public health concern. Among the encountered mycotoxigenic fungi in cereals, Fusarium spp. are the most frequent and produce both regulated (i.e., T-2 toxin, deoxynivalenol -DON-, zearalenone -ZEA-) and emerging (i.e., enniatins -ENNs-, beauvericin -BEA-) mycotoxins. In this study, we investigated the in vitro cytotoxic effects of regulated and emerging fusariotoxins on HepaRG cells in 2D and 3D models using undifferentiated and differentiated cells. We also studied the impact of ENN B1 and ENN B exposure on gene expression of HepaRG spheroids. Gene expression profiling pinpointed the differentially expressed genes (DEGs) and overall similar pathways were involved in responses to mycotoxin exposure. Complement cascades, metabolism, steroid hormones, bile secretion, and cholesterol pathways were all negatively impacted by both ENNs. For cholesterol biosynthesis, 23/27 genes were significantly down-regulated and could be correlated to a 30% reduction in cholesterol levels. Our results show the impact of ENNs on the cholesterol biosynthesis pathway for the first time. This finding suggests a potential negative effect on human health due to the essential role this pathway plays.
Molecular screening of ALK1/ACVRL1 and ENG genes in hereditary hemorrhagic telangiectasia in France
Hereditary hemmorrhagic telangiectasia (HHT, or Osler-Rendu-Weber syndrome) is an autosomal dominant disease characterized by arteriovenous malformations, affecting 1 out of 10,000 individuals in France. The disease is caused by mutations of two genes: ENG and ALK1 (ACVRL1). We screened the coding sequence of ENG and ALK1 in 160 unrelated French index cases. A germline mutation was identified in 100 individuals (62.5%). A total of 36 mutations were found in ENG, including three nonsense mutations, 19 small insertions/deletions leading to a frameshift, two inframe deletions, seven missense mutations, and five intronic or splice-site mutations. Of the 36 mutations, 33 were novel mutations. A total of 64 mutations were found in ALK1, including six nonsense mutations, 28 small insertions/deletions leading to a frameshift, one inframe deletion, 27 missense mutations, and two intronic or splice-site mutations. Of the 64 mutations, 27 were novel mutations. Mutations were found in most parts of the coding sequence for both genes, except ALK1 exon 5 and ENG exons 12 to 14. Missense mutations in ALK1 were more frequent in exons 7, 8, and 10. ENG cDNA was sequenced for three intronic mutations: c.689+2T>C produced an abnormal transcript excluding exon 5, c.1103+3-1103+8del activated a cryptic splice site 22 bp upstream, and c. 1428G>A produced two abnormal transcripts, one including intron 11 and the other excluding exon 10. Although most of the mutations were private, some recurrent mutations in ALK1 were of particular interest. Mutation c.1112-1113dupG (p.Gly371fsX391) was found in 17 unrelated individuals sharing a common haplotype, strongly suggesting a founder effect related to the concentration of patients previously reported in a specific French region (Rhone-Alpes). Three missense mutations involved the same codon: c.1231C>T (p.Arg411Trp), c.1232G>C (p.Arg411Pro), and c.1232G>A (p.Arg411Gln) were found in seven, two, and one patients, respectively. Haplotype analysis was in favor of both a founder effect and a mutation hot-spot.