Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Courseille, Christian"
Sort by:
Monoclinic Uncomplexed Double-Stranded, Antiparallel, Left-Handed β5.6-Helix ($\\uparrow\\downarrow\\beta^{5.6}$) Structure of Gramicidin A: Alternate Patterns of Helical Association and Deformation
A comparison of the monoclinic and orthorhombic crystal structures of the uncomplexed double-stranded, antiparallel, left-handed β-helix (5.6 amino acid residues per turn) ($\\uparrow\\downarrow\\beta^{5.6}$) conformers of gramicidin A reveals marked differences in the tryptophan side-chain orientations and the degree of helical uniformity of the dimer and in the manner in which these helical dimers associate with one another in the crystal. The helix of the orthorhombic dimer exhibits a regular pattern of bulges and constrictions that appears to be induced by crystal packing forces affecting tryptophan side chains that are aligned parallel to the helix axis. The monoclinic dimer is more uniform than the orthorhombic dimer as a consequence of π stacking interactions between dimers in which orientation of tryptophan side chains is normal to the helix axis to relieve the lateral crystal packing forces that may locally twist and deform the helix. It may be inferred from these observations that lipid interactions may be expected to destabilize the$\\uparrow\\downarrow\\beta^{5.6}$helix when it is inserted into a membrane bilayer.