Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,352
result(s) for
"Coyle, M."
Sort by:
Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer
2015
Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. Much effort is focused on the reduction of surface levels of ozone owing to its health and vegetation impacts, but recent efforts to achieve reductions in exposure at a country scale have proved difficult to achieve owing to increases in background ozone at the zonal hemispheric scale. There is also a growing realisation that the role of ozone as a short-lived climate pollutant could be important in integrated air quality climate change mitigation. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models. It takes the view that knowledge across the scales is important for dealing with air quality and climate change in a synergistic manner. The review shows that there remain a number of clear challenges for ozone such as explaining surface trends, incorporating new chemical understanding, ozone–climate coupling, and a better assessment of impacts. There is a clear and present need to treat ozone across the range of scales, a transboundary issue, but with an emphasis on the hemispheric scales. New observational opportunities are offered both by satellites and small sensors that bridge the scales.
Journal Article
Antigenic Fingerprinting following Primary RSV Infection in Young Children Identifies Novel Antigenic Sites and Reveals Unlinked Evolution of Human Antibody Repertoires to Fusion and Attachment Glycoproteins
2016
Respiratory Syncytial Virus (RSV) is the major cause of pneumonia among infants. Here we elucidated the antibody repertoire following primary RSV infection and traced its evolution through adolescence and adulthood. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes in the RSV fusion protein (F) and attachment protein (G) were used for unbiased epitope profiling of infant sera prior to and following RSV infection. F-GFPDL analyses demonstrated modest changes in the anti-F epitope repertoires post-RSV infection, while G-GFPDL analyses revealed 100-fold increase in number of bound phages. The G-reactive epitopes spanned the N- and C-terminus of the G ectodomain, along with increased reactivity to the central conserved domain (CCD). Panels of F and G antigenic sites were synthesized to evaluate sera from young children (<2 yr), adolescents (14-18 yr) and adults (30-45 yr) in SPR real-time kinetics assays. A steady increase in RSV-F epitope repertoires from young children to adults was observed using peptides and F proteins. Importantly, several novel epitopes were identified in pre-fusion F and an immunodominant epitope in the F-p27. In all age groups, antibody binding to pre-fusion F was 2-3 folds higher than to post-fusion form. For RSV-G, antibody responses were high following early RSV infection in children, but declined significantly in adults, using either G proteins or peptides. This study identified unlinked evolution of anti-F and anti G responses and supportive evidence for immune pressure driven evolution of RSV-G. These findings could help development of effective countermeasures including vaccines.
Journal Article
New tools for dissecting the general 2HDM
by
Wagner, Carlos E. M.
,
Carena, Marcela
,
Ireland, Aurora
in
Classical and Quantum Gravitation
,
Constraint modelling
,
CP violation
2023
A
bstract
Two Higgs doublet models (2HDM) provide the low energy effective theory (EFT) description in many well motivated extensions of the Standard Model. It is therefore relevant to study their properties, as well as the theoretical constraints on these models. In this article we concentrate on three relevant requirements for the validity of the 2HDM framework, namely the perturbative unitarity bounds, the bounded from below constraints, and the vacuum stability constraints. In this study, we concentrate on the most general renormalizable version of the 2HDM — without imposing any parity symmetry, which may be violated in many UV extensions. We derive novel analytical expressions that generalize those previously obtained in more restrictive scenarios to the most general case. We also discuss the phenomenological implications of these bounds, focusing on
CP
violation.
Journal Article
Resolving the muon g − 2 tension through Z′-induced modifications to σhad
by
Wagner, Carlos E. M.
,
Coyle, Nina M.
in
Classical and Quantum Gravitation
,
Collaboration
,
Elementary Particles
2023
A
bstract
The QED hadronic vacuum polarization function plays an important role in the determination of precision electroweak observables and of the anomalous magnetic moment of the muon. These contributions have been computed from data, by means of dispersion relations affecting the electron positron hadronic cross sections, or by first principle lattice-QCD computations in the Standard Model. Today there is a discrepancy between the two approaches for determining these contributions, which affects the comparison of the measurement of the anomalous magnetic moment of the muon with the theoretical predictions. In this article, we revisit the idea that this discrepancy may be explained by the presence of a new light gauge boson that couples to the first generation quark and leptons and has a mass below the GeV scale. We discuss the requirements for its consistency with observations and the phenomenological implications of such a gauge extension.
Journal Article
Synergy or substitution? The interactive effects of insiders' fairness and support and organizational socialization tactics on newcomer role clarity and social integration
by
Akremi, Assâad El
,
Coyle-Shapiro, Jacqueline A.-M.
,
Nasr, Mohamed Ikram
in
Business administration
,
Fairness
,
Heuristic
2019
Drawing on fairness heuristics theory (Lind, 2001) and cue consistency theory (Maheswaran & Chaiken, 1991; Slovic, 1966), we test a moderated mediation model that examines whether the institutionalization of organizational socialization tactics enhances or constrains the beneficial effects of supervisory and coworker-referenced justice and support on newcomer role clarity and social integration. The findings of a three-wave study of 219 French newcomers show that although institutionalized tactics strengthen the positive indirect effects of supervisory interpersonal and informational justice on role clarity, via perceived supervisor support, it also acts as a substitute that weakens the positive indirect effect of coworker-referenced interpersonal justice on social integration, via perceived coworker support. Implications of the findings for socialization research and practice are discussed.
Journal Article
Antibody affinity maturation and plasma IgA associate with clinical outcome in hospitalized COVID-19 patients
by
Khurana, Surender
,
Tang, Juanjie
,
Grubbs, Gabrielle
in
49/79
,
631/250/2152/2153/1291
,
631/250/255/2514
2021
Hospitalized COVID-19 patients often present with a large spectrum of clinical symptoms. There is a critical need to better understand the immune responses to SARS-CoV-2 that lead to either resolution or exacerbation of the clinical disease. Here, we examine longitudinal plasma samples from hospitalized COVID-19 patients with differential clinical outcome. We perform immune-repertoire analysis including cytokine, hACE2-receptor inhibition, neutralization titers, antibody epitope repertoire, antibody kinetics, antibody isotype and antibody affinity maturation against the SARS-CoV-2 prefusion spike protein. Fatal cases demonstrate high plasma levels of IL-6, IL-8, TNFα, and MCP-1, and sustained high percentage of IgA-binding antibodies to prefusion spike compared with non-ICU survivors. Disease resolution in non-ICU and ICU patients associates with antibody binding to the receptor binding motif and fusion peptide, and antibody affinity maturation to SARS-CoV-2 prefusion spike protein. Here, we provide insight into the immune parameters associated with clinical disease severity and disease-resolution outcome in hospitalized patients that could inform development of vaccine/therapeutics against COVID-19.
SARS-CoV2 infection has been linked to a wide range of clinical severities and the immunopathology is still under intense scrutiny. Here, the authors uncover an association of antibody affinity maturation and plasma IgA levels with clinical outcome in patients with COVID-19 disease.
Journal Article
A Case Study Method for Integrating Spirituality and Narrative Therapy
2024
Theological/spiritual reflection in psychotherapeutic practice has increased in recent years. Approaches for reflection and integration vary depending on the practitioner’s spiritual and theoretical beliefs. The integrative approach utilized in this paper is derived from a phenomenological perspective of the author, who was schooled in pastoral theology and later family therapy. Considering the pastoral theologian Seward Hiltner’s perspectival approach, this integrative approach creates a conversational method, integrating the client’s concerns with specific narrative therapy interventions or practices and the theological/spiritual concepts of immanence–transcendence. Finally, this case study’s methodology offers constructive questions that clinical practitioners can apply to specific psychotherapy approaches as well as theological concepts.
Journal Article
Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans
by
Khurana, Surender
,
Treanor, John
,
Hahn, Megan
in
631/326/590/1883
,
631/326/590/2292
,
631/326/590/2294
2019
Several vaccines are approved in the United States for seasonal influenza vaccination every year. Here we compare the impact of repeat influenza vaccination on hemagglutination inhibition (HI) titers, antibody binding and affinity maturation to individual hemagglutinin (HA) domains, HA1 and HA2, across vaccine platforms. Fold change in HI and antibody binding to HA1 trends higher for H1N1pdm09 and H3N2 but not against B strains in groups vaccinated with FluBlok compared with FluCelvax and Fluzone. Antibody-affinity maturation occurs against HA1 domain of H1N1pdm09, H3N2 and B following vaccination with all vaccine platforms, but not against H1N1pdm09-HA2. Importantly, prior year vaccination of subjects receiving repeat vaccinations demonstrated reduced antibody-affinity maturation to HA1 of all three influenza virus strains irrespective of the vaccine platform. This study identifies an important impact of repeat vaccination on antibody-affinity maturation following vaccination, which may contribute to lower vaccine effectiveness of seasonal influenza vaccines in humans
Here, Khurana et al. report the results of a phase 4 clinical trial with three FDA approved influenza vaccines and show that repeat influenza vaccination results in reduced antibody affinity maturation to hemagglutinin domain 1 irrespective of vaccine platform.
Journal Article
Effects of global change during the 21st century on the nitrogen cycle
2015
The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 Tg N yr−1 in 2010, which is approximately equal to the sum of biological N fixation in unmanaged terrestrial and marine ecosystems. According to current projections, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 Tg N yr−1 by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion-related emissions implemented. Some N-cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 Tg N yr−1 in 2008 to 93 Tg N yr−1 in 2100 assuming a change in global surface temperature of 5 °C in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 135 Tg N yr−1. Another major change is the effect of climate changes on aerosol composition and specifically the increased sublimation of NH4NO3 close to the ground to form HNO3 and NH3 in a warmer climate, which deposit more rapidly to terrestrial surfaces than aerosols. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)2SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42− from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10 and human health effects globally as well as eutrophication and climate effects. The volatility of NH4NO3 and rapid dry deposition of the vapour phase dissociation products, HNO3 and NH3, is estimated to be reducing the transport distances, deposition footprints and inter-country exchange of Nr in these regions. There have been important policy initiatives on components of the global N cycle. These have been regional or country-based and have delivered substantial reductions of inputs of Nr to sensitive soils, waters and the atmosphere. To date there have been no attempts to develop a global strategy to regulate human inputs to the nitrogen cycle. However, considering the magnitude of global Nr use, potential future increases, and the very large leakage of Nr in many forms to soils, waters and the atmosphere, international action is required. Current legislation will not deliver the scale of reductions globally for recovery from the effects of Nr deposition on sensitive ecosystems, or a decline in N2O emissions to the global atmosphere. Such changes would require substantial improvements in nitrogen use efficiency across the global economy combined with optimization of transport and food consumption patterns. This would allow reductions in Nr use, inputs to the atmosphere and deposition to sensitive ecosystems. Such changes would offer substantial economic and environmental co-benefits which could help motivate the necessary actions.
Journal Article
Monoclonal antibodies targeting sites in respiratory syncytial virus attachment G protein provide protection against RSV-A and RSV-B in mice
2024
Currently, only Palivizumab and Nirsevimab that target the respiratory syncytical virus (RSV) fusion protein are licensed for pre-treatment of infants. Glycoprotein-targeting antibodies may also provide protection against RSV. In this study, we generate monoclonal antibodies from mice immunized with G proteins from RSV-A2 and RSV-B1 strains. These monoclonal antibodies recognize six unique antigenic classes (G0-G5). None of the anti-G monoclonal antibodies neutralize RSV-A2 or RSV-B1 in vitro. In mice challenged with either RSV-A2 line 19 F or RSV-B1, one day after treatment with anti-G monoclonal antibodies, all monoclonal antibodies reduce lung pathology and significantly reduce lung infectious viral titers by more than 2 logs on day 5 post-RSV challenge. RSV dissemination in the lungs was variable and correlated with lung pathology. We demonstrate new cross-protective anti-G monoclonal antibodies targeting multiple sites including conformation-dependent class G0 MAb 77D2, CCD-specific class G1 MAb 40D8, and carboxy terminus of CCD class G5 MAb 7H11, to support development of G-targeting monoclonal antibodies against RSV.
Effective antibodies targeting various respiratory syncytial virus (RSV) proteins are needed to address public health burden of RSV. Here the authors shows that in addition to the currently approved F-targeting monoclonal antibodies, anti-G cross-reactive monoclonal antibodies to RSV-A and RSV-B strains can provide cross-protection and prevent from RSV disease.
Journal Article