Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
167 result(s) for "Crivelli, P"
Sort by:
Sensitivity potential to a light flavor-changing scalar boson with DUNE and NA64μ
In this work, we report on the sensitivity potential of complementary muon-on-target experiments to new physics using a scalar boson benchmark model associated with charged lepton flavor violation. The NA64 μ experiment at CERN uses a 160-GeV energy muon beam with an active target to search for excess events with missing energy and momentum as a probe of new physics. At the same time, the proton beam at Fermilab, which is used to produce the neutrino beam for the Deep Underground Neutrino Experiment (DUNE), will also produce a high-intensity muon beam dumped in an absorber. Combined with the liquid argon near detector, the system could be used to search for similar scalar boson particles with a lower-energy but higher-intensity beam. We find that both NA64 μ and DUNE could cover new, unexplored parts of the parameter space of the same benchmark model, providing a complementary way to search for new physics.
Probing hidden leptonic scalar portals using the NA64 experiment at CERN
In this study, we demonstrate the potential of the NA64 experiment at CERN SPS to search for New Physics processes involving e → μ transitions after the collision of 100 GeV electrons with target nuclei. A new Dark Sector leptonic portal in which a scalar boson φ could be produced in the lepton-flavor-changing bremsstrahlung-like reaction, e N → μ N φ , is used as benchmark process. In this work, we develop a realistic Monte Carlo simulation of the NA64 experimental setup implementing the differential and total production cross-section computed at exact tree-level and applying the Weiszäcker–Williams phase space approximation. Using this framework, we investigate the main background sources and calculate the expected sensitivity of the experiment. The results indicate that with minor setup optimization, NA64 can probe a large fraction of the available parameter space compatible with the muon g - 2 anomaly and the Dark Matter relic predictions in the context of a new Dark Sector leptonic portal with 10 11 EOT. This result paves the way to the exploration of lepton-flavour-changing transitions in NA64.
Sensitivity potential to a light flavor-changing scalar boson with DUNE and NA64Formula omitted
In this work, we report on the sensitivity potential of complementary muon-on-target experiments to new physics using a scalar boson benchmark model associated with charged lepton flavor violation. The NA64 [Formula omitted] experiment at CERN uses a 160-GeV energy muon beam with an active target to search for excess events with missing energy and momentum as a probe of new physics. At the same time, the proton beam at Fermilab, which is used to produce the neutrino beam for the Deep Underground Neutrino Experiment (DUNE), will also produce a high-intensity muon beam dumped in an absorber. Combined with the liquid argon near detector, the system could be used to search for similar scalar boson particles with a lower-energy but higher-intensity beam. We find that both NA64 [Formula omitted] and DUNE could cover new, unexplored parts of the parameter space of the same benchmark model, providing a complementary way to search for new physics.
A magneto-gravitational trap for studies of gravitational quantum states
Observation time is the key parameter for improving the precision of measurements of gravitational quantum states of particles levitating above a reflecting surface. We propose a new method of long confinement in such states of atoms, anti-atoms, neutrons and other particles possessing a magnetic moment. The earth gravitational field and a reflecting mirror confine particles in the vertical direction. The magnetic field originating from electric current passing through a vertical wire confines particles in the radial direction. Under appropriate conditions, motions along these two directions are decoupled to a high degree. We estimate characteristic parameters of the problem, and list possible systematic effects that limit storage times due to the coupling of the two motions.
Intense beam of metastable Muonium
Precision spectroscopy of the Muonium Lamb shift and fine structure requires a robust source of 2S Muonium. To date, the beam-foil technique is the only demonstrated method for creating such a beam in vacuum. Previous experiments using this technique were statistics limited, and new measurements would benefit tremendously from the efficient 2S production at a low energy muon ( < 20  keV) facility. Such a source of abundant low energy μ + has only become available in recent years, e.g. at the Low-Energy Muon beamline at the Paul Scherrer Institute. Using this source, we report on the successful creation of an intense, directed beam of metastable Muonium. We find that even though the theoretical Muonium fraction is maximal in the low energy range of 2–5 keV, scattering by the foil and transport characteristics of the beamline favor slightly higher μ + energies of 7–10 keV. We estimate that an event detection rate of a few events per second for a future Lamb shift measurement is feasible, enabling an increase in precision by two orders of magnitude over previous determinations.
In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment
Background The human gleno-humeral joint is normally represented as a spherical hinge and its center of rotation is used to construct humerus anatomical axes and as reduction point for the computation of the internal joint moments. The position of the gleno-humeral joint center (GHJC) can be estimated by recording ad hoc shoulder joint movement following a functional approach. In the last years, extensive research has been conducted to improve GHJC estimate as obtained from positioning systems such as stereo-photogrammetry or electromagnetic tracking. Conversely, despite the growing interest for wearable technologies in the field of human movement analysis, no studies investigated the problem of GHJC estimation using miniaturized magneto-inertial measurement units (MIMUs). The aim of this study was to evaluate both accuracy and precision of the GHJC estimation as obtained using a MIMU-based methodology and a functional approach. Methods Five different functional methods were implemented and comparatively assessed under different experimental conditions (two types of shoulder motions: cross and star type motion; two joint velocities: ω max  = 90°/s, 180°/s; two ranges of motion: Ɵ = 45°, 90°). Validation was conducted on five healthy subjects and true GHJC locations were obtained using magnetic resonance imaging. Results The best performing methods (NAP and SAC) showed an accuracy in the estimate of the GHJC between 20.6 and 21.9 mm and repeatability values between 9.4 and 10.4 mm. Methods performance did not show significant differences for the type of arm motion analyzed or a reduction of the arm angular velocity (180°/s and 90°/s). In addition, a reduction of the joint range of motion (90° and 45°) did not seem to influence significantly the GHJC position estimate except in a few subject-method combinations. Conclusions MIMU-based functional methods can be used to estimate the GHJC position in vivo with errors of the same order of magnitude than those obtained using traditionally stereo-photogrammetric techniques. The methodology proposed seemed to be robust under different experimental conditions. The present paper was awarded as “SIAMOC Best Methodological Paper 2016”.
Efficiency of desensitizing materials in xerostomic patients with head and neck cancer: a comparative clinical study
ObjectivesTo assess the clinical effectiveness of four desensitizing materials in patients who are xerostomic due to radiotherapy for head and neck cancer (HNC) in comparison to a healthy group with normal salivation.Methods and materialsThe study was conducted as a split-mouth randomized clinical trial. Forty HNC patients (group A) and 46 healthy patients (group B) suffering from dentin hypersensitivity (DH) were included. Salivary flow was determined through a scialometric test. Hypersensitivity was assessed with air stimulus and tactile stimulus. The materials used as desensitizing agents were Vertise Flow, Universal Dentin Sealant, Clearfil Protect Bond, and Flor-Opal Varnish. The response was recorded before application of the materials, immediately after, and at 1 week, 4 weeks, and 12 weeks.ResultsSalivary flow rates in groups A/B were 0.15/0.53 mL/min (unstimulated) and 0.54/1.27 mL/min (stimulated), respectively. In group A, 100 hypersensitive teeth were included. Application of the desensitizing agents significantly decreased the hypersensitivity immediately and throughout the 4-week follow-up (p < 0.001). However, after the 12-week timepoint, a loss of efficacy was detected in all agents (p = 0.131). In group B, 116 hypersensitive teeth were included. The materials performed a more stable action, although a loss of effectiveness was detected at 12-week control (p = 0.297).ConclusionThe efficiency of the desensitizing agents after the first application was similar in both groups. In the radiated group, this effect lasted for shorter periods than in healthy controls.Clinical relevanceHNC patients with hyposalivation may be a new risk group for DH.
Beam Purity for Light Dark Matter Search in Beam Dump Experiments
This paper reviews the search for light dark matter in beam dump experiments with a special emphasis on the necessity of beam purity for precise background rejection at the sensitivities aimed at these experiments. As a case study we cite the P348 experiment which has test beam time in Fall 2015 at the SPS H4 beam line at CERN and aims to search for the U′(1) gauge boson, A′, which as per one model of dark matter mediates a weak interaction between ordinary matter and dark matter via mixing of these “dark photons” with ordinary photon. The experiment aims to probe the still unexplored area of mixing strength 10-5≤ϵ≤10-3 and masses MA′≤100 MeV by using 10–300 GeV electron beam from the CERN SPS. This paper presents the simulation results for rejection of background due to beam impurity, by tracking the incoming particles with Micromegas detectors at a level <10-10.
Design of a microwave spectrometer for high-precision Lamb shift spectroscopy of antihydrogen atoms
We have developed a microwave spectrometer for a measurement of the 2 S 1 / 2 - 2 P 1 / 2 Lamb shift of antihydrogen atoms towards the determination of the antiproton charge radius. The spectrometer consists of two consecutive apparatuses, of which the first apparatus, Hyperfine Selector (HFS), filters out 2 S 1 / 2 ( F = 1 ) hyperfine states and pre-selects the 2 S 1 / 2 ( F = 0 ) state, and the second apparatus, MicroWave Scanner (MWS), sweeps the frequency around the target transition to obtain the spectrum. We optimized the geometry of the apparatuses by evaluating the S-parameter that represents the ratio of the reflected microwave signal over the input, utilizing microwave simulations based on the finite element method. The HFS was designed to obtain a resonant property at 1.1 GHz for an efficient removal of the 2 S 1 / 2 ( F = 1 ) hyperfine states, and the MWS was designed to realize weak frequency-dependency in the signal reflection. Also, the spatial distributions of microwave electric field were simulated. We report the design of the spectrometer and discuss an expected precision of the first measurement.
A new approach for the ortho-positronium lifetime determination in a vacuum cavity
Currently, the experimental uncertainty for the determination of the ortho-positronium (o-Ps) decay rate is at 150 ppm precision; this is two orders of magnitude lower than the theoretical one, at 1 ppm level. Here we propose a new proof of concept experiment aiming for an accuracy of 100 ppm to be able to test the second-order correction in the calculations, which is ≃45 ( a π ) 2 ≈200ppm . The improvement relies on a new technique to confine the o-Ps in a vacuum cavity. Moreover, a new method was developed to subtract the time dependent pick-off annihilation rate of the fast backscattered positronium from the o-Ps decay rate prior to fitting the distribution. Therefore, this measurement will be free from the systematic errors present in the previous experiments. The experimental setup developed for our recent search for invisible decay of ortho-positronium is being used. The precision will be limited by the statistical uncertainty, thus, if the expectations are fulfilled, this experiment could pave the way to reach the ultimate accuracy of a few ppm level to confirm or confront directly the higher order QED corrections. This will provide a sensitive test for new physics, e.g. a discrepancy between theoretical prediction and measurements could hint at the existence of a hidden sector which is a possible dark matter candidate.