Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Croniger, Colleen"
Sort by:
The Artificial Sweetener Splenda Promotes Gut Proteobacteria, Dysbiosis, and Myeloperoxidase Reactivity in Crohn's Disease-Like Ileitis
Abstract Background Epidemiological studies indicate that the use of artificial sweeteners doubles the risk for Crohn's disease (CD). Herein, we experimentally quantified the impact of 6-week supplementation with a commercial sweetener (Splenda; ingredients sucralose maltodextrin, 1:99, w/w) on both the severity of CD-like ileitis and the intestinal microbiome alterations using SAMP1/YitFc (SAMP) mice. Methods Metagenomic shotgun DNA sequencing was first used to characterize the microbiome of ileitis-prone SAMP mice. Then, 16S rRNA microbiome sequencing, quantitative polymerase chain reaction, fluorescent in situ hybridization (FISH), bacterial culture, stereomicroscopy, histology, and myeloperoxidase (MPO) activity analyses were then implemented to compare the microbiome and ileitis phenotype in SAMP with that of control ileitis-free AKR/J mice after Splenda supplementation. Results Metagenomics indicated that SAMP mice have a gut microbial phenotype rich in Bacteroidetes, and experiments showed that Helicobacteraceae did not have an exacerbating effect on ileitis. Splenda did not increase the severity of (stereomicroscopic/histological) ileitis; however, biochemically, ileal MPO activity was increased in SAMP treated with Splenda compared with nonsupplemented mice (P < 0.022) and healthy AKR mice. Splenda promoted dysbiosis with expansion of Proteobacteria in all mice, and E. coli overgrowth with increased bacterial infiltration into the ileal lamina propria of SAMP mice. FISH showed increase malX gene-carrying bacterial clusters in the ilea of supplemented SAMP (but not AKR) mice. Conclusions Splenda promoted gut Proteobacteria, dysbiosis, and biochemical MPO reactivity in a spontaneous model of (Bacteroidetes-rich) ileal CD. Our results indicate that although Splenda may promote parallel microbiome alterations in CD-prone and healthy hosts, this did not result in elevated MPO levels in healthy mice, only CD-prone mice. The consumption of sucralose/maltodextrin-containing foods might exacerbate MPO intestinal reactivity only in individuals with a pro-inflammatory predisposition, such as CD.
Erlotinib protects against LPS-induced Endotoxicity because TLR4 needs EGFR to signal
Several components of the canonical pathway of response to lipopolysaccharide (LPS) are required for the EGF-dependent activation of NFκB. Conversely, the ability of Toll-like Receptor 4 (TLR4) to activate NFκB in response to LPS is impaired by down regulating EGF receptor (EGFR) expression or by using the EGFR inhibitor erlotinib. The LYN proto-oncogene (LYN) is required for signaling in both directions. LYN binds to the EGFR upon LPS stimulation, and erlotinib impairs this association. In mice, erlotinib blocks the LPS-induced expression of tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) and ameliorates LPS-induced endotoxity, revealing that EGFR is essential for LPS-induced signaling in vivo.
Retinoic Acid Upregulates Preadipocyte Genes to Block Adipogenesis and Suppress Diet-Induced Obesity
Retinoic acid (RA) protects mice from diet-induced obesity. The activity is mediated in part through activation of the nuclear receptors RA receptors (RARs) and peroxisome proliferator-activated receptor β/δ and their associated binding proteins cellular RA binding protein type II (CRABP-II) and fatty acid binding protein type 5 in adipocytes and skeletal muscle, leading to enhanced lipid oxidation and energy dissipation. It was also reported that RA inhibits differentiation of cultured preadipocytes. However, whether the hormone suppresses adipogenesis in vivo and how the activity is propagated remained unknown. In this study, we show that RA inhibits adipocyte differentiation by activating the CRABP-II/RARγ path in preadipose cells, thereby upregulating the expression of the adipogenesis inhibitors Pref-1, Sox9, and Kruppel-like factor 2 (KLF2). In turn, KLF2 induces the expression of CRABP-II and RARγ, further potentiating inhibition of adipocyte differentiation by RA. The data also indicate that RA suppresses adipogenesis in vivo and that the activity significantly contributes to the ability of the hormone to counteract diet-induced obesity.
Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice
The Mouse Metabolic Phenotyping Center (MMPC) Consortium was established to address the need to characterize the growing number of mouse models of metabolic diseases, particularly diabetes and obesity. A goal of the MMPC Consortium is to propose standard methods for assessing metabolic phenotypes in mice. In this article, we discuss issues pertaining to the design and performance of various tests of glucose metabolism. We also propose guidelines for the description of methods, presentation of data and interpretation of results. The recommendations presented in this article are based on the experience of the MMPC Consortium and other investigators.
PTPRT Regulates High-Fat Diet-Induced Obesity and Insulin Resistance
Obesity is a risk factor for many human diseases. However, the underlying molecular causes of obesity are not well understood. Here, we report that protein tyrosine phosphatase receptor T (PTPRT) knockout mice are resistant to high-fat diet-induced obesity. Those mice avoid many deleterious side effects of high-fat diet-induced obesity, displaying improved peripheral insulin sensitivity, lower blood glucose and insulin levels. Compared to wild type littermates, PTPRT knockout mice show reduced food intake. Consistently, STAT3 phosphorylation is up-regulated in the hypothalamus of PTPRT knockout mice. These studies implicate PTPRT-modulated STAT3 signaling in the regulation of high-fat diet-induced obesity.
The Signal Transducer and Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes
The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased energy expenditure and paradoxically decreased release of triglycerides from white adipose tissue (WAT). Liver mitochondria from STAT1-/- mice show both defects in coupling of the electron transport chain (ETC) and increased numbers of mitochondria. Consistent with elevated numbers of mitochondria, STAT1-/- mice expressed increased amounts of PGC1α, a master regulator of mitochondrial biogenesis. STAT1 binds to the PGC1α promoter in fed mice but not in fasted animals, suggesting that STAT1 inhibited transcription of PGC1α. Since STAT1-/- mice utilized more lipids we examined white adipose tissue (WAT) stores. Contrary to expectations, fasted STAT1-/- mice did not lose lipid from WAT. β-adrenergic stimulation of glycerol release from isolated STAT1-/- WAT was decreased, while activation of hormone sensitive lipase was not changed. These findings suggest that STAT1-/- adipose tissue does not release glycerol and that free fatty acids (FFA) re-esterify back to triglycerides, thus maintaining fat mass in fasted STAT1-/- mice.
Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo
Cancer cells in culture rely on glutamine as an anaplerotic substrate to replenish tricarboxylic acid (TCA) cycle intermediates that have been consumed. but it is uncertain whether cancers in vivo depend on glutamine for anaplerosis. Here, following in vivo infusions of [ 13 C 5 ]-glutamine in mice bearing subcutaneous colon cancer xenografts, we showed substantial amounts of infused [ 13 C 5 ]-glutamine enters the TCA cycle in the tumors. Consistent with our prior observation that colorectal cancers (CRCs) with oncogenic mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic (PIK3CA) subunit are more dependent on glutamine than CRCs with wild type PIK3CA, labeling from glutamine to most TCA cycle intermediates was higher in PIK3CA-mutant subcutaneous xenograft tumors than in wild type PIK3CA tumors. Moreover, using orthotopic mouse colon tumors estalished from human CRC cells or patient-derived xenografts, we demonstrated substantial amounts of infused [ 13 C 5 ]-glutamine enters the TCA cycle in the tumors and tumors utilize anaplerotic glutamine to a greater extent than adjacent normal colon tissues. Similar results were seen in spontaneous colon tumors arising in genetically engineered mice. Our studies provide compelling evidence CRCs utilizes glutamine to replenish the TCA cycle in vivo , suggesting that targeting glutamine metabolism could be a therapeutic approach for CRCs, especially for PIK3CA-mutant CRCs.
Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge
Brown adipose tissue (BAT) is a specialized thermogenic organ in mammals. The ability of BAT mitochondria to generate heat in response to cold-challenge to maintain core body temperature is essential for organismal survival. While cold activated BAT mitochondrial biogenesis is recognized as critical for thermogenic adaptation, the contribution of mitochondrial quality control to this process remains unclear. Here, we show mitophagy is required for brown adipocyte mitochondrial homeostasis during thermogenic adaptation. Mitophagy is significantly increased in BAT from cold-challenged mice (4 °C) and in β-agonist treated brown adipocytes. Blockade of mitophagy compromises brown adipocytes mitochondrial oxidative phosphorylation (OX-PHOS) capacity, as well as BAT mitochondrial integrity. Mechanistically, cold-challenge induction of BAT mitophagy is UCP1-dependent. Furthermore, our results indicate that mitophagy coordinates with mitochondrial biogenesis, maintaining activated BAT mitochondrial homeostasis. Collectively, our in vivo and in vitro findings identify mitophagy as critical for brown adipocyte mitochondrial homeostasis during cold adaptation.
Preclinical obesity curriculum: audit, implementation, and evaluation
Background This study aimed to (1) evaluate the current status of obesity education at Case Western Reserve University School of Medicine (CWRU) (2), introduce a comprehensive first-year curriculum on obesity, and (3) assess the impact of the curriculum on self-reported attitudes and knowledge regarding obesity among first-year medical students. Methods The preclinical curriculum at CWRU was reviewed to determine the degree of coverage of Obesity Medicine Education Collaborative (OMEC) competencies for healthcare professionals, and recommendations were provided for revising the curriculum to better adhere to these evidence-based competencies. A survey on obesity attitudes and knowledge was given before and after the implementation of the new curriculum to measure intervention-related changes. Changes in obesity attitudes and knowledge were compared (1) before and after the intervention for the class of 2025 and (2) after the intervention for the class of 2025 to a historical cohort that did not receive the intervention. Results Among the 27 competencies examined in the audit, 55% were unmet and 41% were partially met. Of 186 first-year medical students (M1s), 29 (16%) completed the baseline survey and 26 (14%) completed the post-intervention survey. Following the intervention, there was a notable improvement in attitudes and knowledge regarding obesity. Specifically, there was a significant decrease in the belief that obesity is caused by poor personal choices, and knowledge of obesity in fourteen out of fifteen areas showed significant improvement from pre- to post-intervention. Additionally, obesity attitudes and knowledge were significantly better post-intervention when compared to the historical cohort. Conclusions The improvements made to the preclinical curriculum through this project improved obesity attitudes and knowledge among first-year medical students. This method provides a practical approach for evaluating and enhancing obesity education in medical school curricula.
Development and Implementation of a Medical School Course Integrating Basic, Clinical, and Health Systems Sciences
OBJECTIVE In recent years, significant steps have been made in integrating basic science and clinical medicine. There remains a gap in adding the third pillar of education: health systems science (HSS). Core clerkships represent an ideal learning venue to integrate all three. Students can experience the value of integrating basic science as they learn clinical medicine in environments where HSS is occurring all around them. METHODS We outline the creation of Sciences and Art of Medicine Integrated (SAMI), a course that runs parallel with the clerkship year and integrates basic science and HSS with clinical medicine. A complete description of the planning and implementation of SAMI is provided. We include the participants and educational setting, the goals and objectives, and the structure of each session. To encourage the integration of basic science, HSS, and clinical medicine, students utilize a series of tools, described in detail. Examples of each tool are provided utilizing a case of a patient presenting with obstructive sleep apnea. RESULTS We successfully implemented this course with positive reception from students. CONCLUSION This course represents a step not only toward the integration of HSS with basic science and clinical medicine but also an advancement in training future clinicians to provide high-value care. Future curricular development must consider the validation of a measure of clinical reasoning that assesses a student's ability to think in a cognitively integrated fashion about basic science, HSS, and clinical medicine demonstrated by enhanced justification of clinical reasoning and a more holistic approach to planning patient care.