Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
130 result(s) for "Crossman, David K"
Sort by:
Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy
Intratumor spatial heterogeneity facilitates therapeutic resistance in glioblastoma (GBM). Nonetheless, understanding of GBM heterogeneity is largely limited to the surgically resectable tumor core lesion while the seeds for recurrence reside in the unresectable tumor edge. In this study, stratification of GBM to core and edge demonstrates clinically relevant surgical sequelae. We establish regionally derived models of GBM edge and core that retain their spatial identity in a cell autonomous manner. Upon xenotransplantation, edge-derived cells show a higher capacity for infiltrative growth, while core cells demonstrate core lesions with greater therapy resistance. Investigation of intercellular signaling between these two tumor populations uncovers the paracrine crosstalk from tumor core that promotes malignancy and therapy resistance of edge cells. These phenotypic alterations are initiated by HDAC1 in GBM core cells which subsequently affect edge cells by secreting the soluble form of CD109 protein. Our data reveal the role of intracellular communication between regionally different populations of GBM cells in tumor recurrence. Intratumoural spatial heterogeneity is crucial to enhance therapeutic resistance in glioblastoma. Here, the authors show a paracrine signaling mechanism where glioblastoma-initiating cells located in the tumour edge elevate their malignancy by interaction with core-located tumour cells.
Abundant Lipid and Protein Components of Drusen
Drusen are extracellular lesions characteristic of aging and age-related maculopathy, a major retinal disease of the elderly. We determined the relative proportions of lipids and proteins in drusen capped with retinal pigment epithelium (RPE) and in RPE isolated from non-macular regions of 36 human retinas with grossly normal maculas obtained <6 hr after death. Druse pellets were examined by light and electron microscopy. Component proteins were extracted using novel methods for preserved tissues, separated, subjected to tryptic digestion and LC-MS(MS)(2) analysis using an ion trap mass spectrometer, and identified with reference to databases. Lipid classes were separated using thin layer chromatography and quantified by densitometry. Major druse components were esterified cholesterol (EC), phosphatidylcholine (PC), and protein (37.5+/-13.7, 36.9+/-12.9, and 43.0+/-11.5 ng/druse, respectively). Lipid-containing particles (median diameter, 77 nm) occupied 37-44% of druse volume. Major proteins include vitronectin, complement component 9, apoE, and clusterin, previously seen in drusen, and ATP synthase subunit beta, scavenger receptor B2, and retinol dehydrogenase 5, previously seen in RPE. Drusen and RPE had similar protein profiles, with higher intensities and greater variability in drusen. C8, part of the complement membrane attack complex, was localized in drusen by immunofluorescence. At least 40% of druse content is comprised by lipids dominated by EC and PC, 2 components that are potentially accounted for by just one pathway, the secretion of lipoproteins by RPE. Manipulating genes encoding apolipoprotein pathways would be a fruitful approach to producing drusen with high EC content in laboratory animals. Therapies that directly mitigate drusen should prepare for the substantial volume of neutral lipids. The catalog of major druse proteins is nearing completion.
Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives
We have previously described new pathways of vitamin D3 activation by CYP11A1 to produce a variety of metabolites including 20(OH)D3 and 20,23(OH)2D3. These can be further hydroxylated by CYP27B1 to produce their C1α-hydroxyderivatives. CYP11A1 similarly initiates the metabolism of lumisterol (L3) through sequential hydroxylation of the side chain to produce 20(OH)L3, 22(OH)L3, 20,22(OH)2L3 and 24(OH)L3. CYP11A1 also acts on 7-dehydrocholesterol (7DHC) producing 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone (7DHP) which can be converted to the D3 and L3 configurations following exposure to UVB. These CYP11A1-derived compounds are produced in vivo and are biologically active displaying anti-proliferative, anti-inflammatory, anti-cancer and pro-differentiation properties. Since the protective role of the classical form of vitamin D3 (1,25(OH)2D3) against UVB-induced damage is recognized, we recently tested whether novel CYP11A1-derived D3- and L3-hydroxyderivatives protect against UVB-induced damage in epidermal human keratinocytes and melanocytes. We found that along with 1,25(OH)2D3, CYP11A1-derived D3-hydroxyderivatives and L3 and its hydroxyderivatives exert photoprotective effects. These included induction of intracellular free radical scavenging and attenuation and repair of DNA damage. The protection of human keratinocytes against DNA damage included the activation of the NRF2-regulated antioxidant response, p53-phosphorylation and its translocation to the nucleus, and DNA repair induction. These data indicate that novel derivatives of vitamin D3 and lumisterol are promising photoprotective agents. However, detailed mechanisms of action, and the involvement of specific nuclear receptors, other vitamin D binding proteins or mitochondria, remain to be established.
Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs)
The interactions of derivatives of lumisterol (L3) and vitamin D3 (D3) with liver X receptors (LXRs) were investigated. Molecular docking using crystal structures of the ligand binding domains (LBDs) of LXRα and β revealed high docking scores for L3 and D3 hydroxymetabolites, similar to those of the natural ligands, predicting good binding to the receptor. RNA sequencing of murine dermal fibroblasts stimulated with D3-hydroxyderivatives revealed LXR as the second nuclear receptor pathway for several D3-hydroxyderivatives, including 1,25(OH) 2 D3. This was validated by their induction of genes downstream of LXR. L3 and D3-derivatives activated an LXR-response element (LXRE)-driven reporter in CHO cells and human keratinocytes, and by enhanced expression of LXR target genes. L3 and D3 derivatives showed high affinity binding to the LBD of the LXRα and β in LanthaScreen TR-FRET LXRα and β coactivator assays. The majority of metabolites functioned as LXRα/β agonists; however, 1,20,25(OH) 3 D3, 1,25(OH) 2 D3, 1,20(OH) 2 D3 and 25(OH)D3 acted as inverse agonists of LXRα, but as agonists of LXRβ. Molecular dynamics simulations for the selected compounds, including 1,25(OH) 2 D3, 1,20(OH) 2 D3, 25(OH)D3, 20(OH)D3, 20(OH)L3 and 20,22(OH) 2 L3, showed different but overlapping interactions with LXRs. Identification of D3 and L3 derivatives as ligands for LXRs suggests a new mechanism of action for these compounds.
CHD7 regulates cardiovascular development through ATP-dependent and -independent activities
CHD7 encodes an ATP-dependent chromatin remodeling factor. Mutation of this gene causes multiple developmental disorders, including CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth/development, Genital abnormalities, and Ear anomalies) syndrome, in which conotruncal anomalies are the most prevalent form of heart defects. How CHD7 regulates conotruncal development remains unclear. In this study,we establish that deletion of Chd7 in neural crest cells (NCCs) causes severe conotruncal defects and perinatal lethality, thus providing mouse genetic evidence demonstrating that CHD7 cell-autonomously regulates cardiac NCC development, thereby clarifying a long-standing controversy in the literature. Using transcriptomic analyses, we show that CHD7 finetunes the expression of a gene network that is critical for cardiac NCC development. To gain further molecular insights into gene regulation by CHD7, we performed a protein–protein interaction screen by incubating recombinant CHD7 on a protein array. We find that CHD7 directly interacts with several developmental disorder-mutated proteins including WDR5, a core component of H3K4 methyltransferase complexes. This direct interaction suggested that CHD7 may recruit histone-modifying enzymes to target loci independently of its remodeling functions. We therefore generated a mouse model that harbors an ATPase-deficient allele and demonstrates that mutant CHD7 retains the ability to recruit H3K4 methyltransferase activity to its targets. Thus, our data uncover that CHD7 regulates cardiovascular development through ATP-dependent and -independent activities, shedding light on the etiology of CHD7-related congenital disorders. Importantly, our data also imply that patients carrying a premature stop codon versus missense mutations will likely display different molecular alterations; these patients might therefore require personalized therapeutic interventions.
Altered DNA Methylation Profile in Idiopathic Pulmonary Fibrosis
DNA methylation is an important epigenetic mechanism, which often occurs in response to environmental stimuli and is crucial in regulating gene expression. It is likely that epigenetic alterations contribute to pathogenesis in idiopathic pulmonary fibrosis (IPF). To determine the DNA methylation changes in IPF and their effects on gene expression. Total DNA methylation and DNA methyltransferase expression were compared in IPF and normal control lung tissues. IPF and normal tissues were subjected to comparative analysis of genome-wide DNA methylation and RNA expression using DNA hybridization to the Illumina HumanMethylation27 BeadChip and RNA hybridization to Illumina HumanHT-12 BeadChip. Functional analyses of differentially expressed and differentially methylated genes were done. Selected genes were validated at DNA, RNA, and protein levels. DNA methylation status was altered in IPF. IPF samples demonstrated higher DNA methyltransferase expression without observed alterations in global DNA methylation. Genome-wide differences in DNA methylation status and RNA expression were demonstrated by array hybridization. Among the genes whose DNA methylation status and RNA expression were both significantly altered, 16 genes were hypermethylated in DNA associated with decreased mRNA expression or vice versa. We validated CLDN5, ZNF467, TP53INP1, and DDAH1 genes at the level of DNA methylation status, RNA, and protein-level expression. Changes in DNA methylation correspond to altered mRNA expression of a number of genes, some with known and others with previously uncharacterized roles in IPF, suggesting that DNA methylation is important in the pathogenesis of IPF.
Mycobacterium tuberculosis WhiB3 Maintains Redox Homeostasis by Regulating Virulence Lipid Anabolism to Modulate Macrophage Response
The metabolic events associated with maintaining redox homeostasis in Mycobacterium tuberculosis (Mtb) during infection are poorly understood. Here, we discovered a novel redox switching mechanism by which Mtb WhiB3 under defined oxidizing and reducing conditions differentially modulates the assimilation of propionate into the complex virulence polyketides polyacyltrehaloses (PAT), sulfolipids (SL-1), phthiocerol dimycocerosates (PDIM), and the storage lipid triacylglycerol (TAG) that is under control of the DosR/S/T dormancy system. We developed an in vivo radio-labeling technique and demonstrated for the first time the lipid profile changes of Mtb residing in macrophages, and identified WhiB3 as a physiological regulator of virulence lipid anabolism. Importantly, MtbDeltawhiB3 shows enhanced growth on medium containing toxic levels of propionate, thereby implicating WhiB3 in detoxifying excess propionate. Strikingly, the accumulation of reducing equivalents in MtbDeltawhiB3 isolated from macrophages suggests that WhiB3 maintains intracellular redox homeostasis upon infection, and that intrabacterial lipid anabolism functions as a reductant sink. MtbDeltawhiB3 infected macrophages produce higher levels of pro- and anti-inflammatory cytokines, indicating that WhiB3-mediated regulation of lipids is required for controlling the innate immune response. Lastly, WhiB3 binds to pks2 and pks3 promoter DNA independent of the presence or redox state of its [4Fe-4S] cluster. Interestingly, reduction of the apo-WhiB3 Cys thiols abolished DNA binding, whereas oxidation stimulated DNA binding. These results confirmed that WhiB3 DNA binding is reversibly regulated by a thiol-disulfide redox switch. These results introduce a new paradigmatic mechanism that describes how WhiB3 facilitates metabolic switching to fatty acids by regulating Mtb lipid anabolism in response to oxido-reductive stress associated with infection, for maintaining redox balance. The link between the WhiB3 virulence pathway and DosR/S/T signaling pathway conceptually advances our understanding of the metabolic adaptation and redox-based signaling events exploited by Mtb to maintain long-term persistence.
Late‐Stage Skeletal Muscle Transcriptome in Duchenne Muscular Dystrophy Shows a BMP4‐Induced Molecular Signature
Background Duchenne muscular dystrophy (DMD) is a fatal X‐linked recessive disease due to loss‐of‐function variants in the DYSTROPHIN gene. DMD‐related skeletal muscle wasting is typified by an aberrant immune response involving upregulation of the TGFβ family of cytokines, like TGFβ1 and BMP4. We previously demonstrated that bone morphogenetic protein 4 (BMP4) is increased in DMD and BMP4 stimulation induces a 20‐fold upregulation of Smad8 transcription in muscle cells. However, the role of BMP4 in late‐stage DMD skeletal muscle is unknown. We hypothesized that BMP4 signalling is a driver of aberrant gene expression in late‐stage human DMD skeletal muscle detectable by a transcriptomic signature. Methods Transcriptomes from skeletal muscle biopsies of late‐stage DMD versus non‐DMD controls and C2C12 muscle cells with or without BMP4 stimulation were generated using RNA‐Seq. We tested transcriptional differences at the single transcript level in skeletal muscle biopsy samples from three patients with DMD and compared them to three non‐DMD. They were then analyzed by Ingenuity Pathway Analysis, weighted gene coexpression network analyses (WGCNA) and Gene Set Enrichment Analysis (GSEA). Key hub and high‐fold change genes overlapping in the DMD and BMP4 muscle transcriptomes were validated in additional primary and bulk skeletal muscle samples. Results A total of 3048 transcripts in the human muscle and 5291 transcripts in C2C12 muscle cells were differentially expressed. WGCNA identified an overlapping molecular signature of 1027 genes dysregulated in DMD muscle that were induced in BMP4‐stimulated C2C12 muscle cells. SERPING1 and Aff3 were identified as the top hub genes. Highly upregulated DMD muscle transcripts that overlapped with BMP4‐stimulated C2C12 muscle cells included ADAM12, SERPING1, SMAD8 and SFRP4. DMD skeletal muscle analysis showed aberrant upregulation of TGFβ signalling, extracellular matrix remodelling and collagen biosynthesis pathways, in contrast to inhibited mitochondrial and metabolic pathways. Conclusions In summary, the DMD transcriptome was characterized by dysregulation of immune function, ECM remodelling and muscle bioenergetic metabolism. We additionally define a late‐stage DMD skeletal muscle transcriptome that overlaps with a BMP4‐induced molecular signature in C2C12 muscle cells. This supports BMP4/Smad8 pathway as a disease‐driving regulator of transcriptomic changes in late‐stage DMD skeletal muscle. Further exploration of this cross‐species transcriptomic signature may expand our understanding of the evolution of dystrophic signalling pathways and the associated gene networks, which could be evaluated for therapeutic development.
Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas
Ludwine Messiaen and colleagues report the identification of constitutional LZTR1 mutations in individuals with schwannomatosis, an autosomal dominant inherited disorder of multiple schwannomas. Constitutional SMARCB1 mutations at 22q11.23 have been found in ∼50% of familial and <10% of sporadic schwannomatosis cases 1 . We sequenced highly conserved regions along 22q from eight individuals with schwannomatosis whose schwannomas involved somatic loss of one copy of 22q, encompassing SMARCB1 and NF2 , with a different somatic mutation of the other NF2 allele in every schwannoma but no mutation of the remaining SMARCB1 allele in blood and tumor samples. LZTR1 germline mutations were identified in seven of the eight cases. LZTR1 sequencing in 12 further cases with the same molecular signature identified 9 additional germline mutations. Loss of heterozygosity with retention of an LZTR1 mutation was present in all 25 schwannomas studied. Mutations segregated with disease in all available affected first-degree relatives, although four asymptomatic parents also carried an LZTR1 mutation. Our findings identify LZTR1 as a gene predisposing to an autosomal dominant inherited disorder of multiple schwannomas in ∼80% of 22q-related schwannomatosis cases lacking mutation in SMARCB1 .
Microenvironmental CXCL12 deletion enhances Flt3-ITD acute myeloid leukemia stem cell response to therapy by reducing p38 MAPK signaling
Fms-like tyrosine kinase 3 (Flt3) tyrosine kinase inhibitors (Flt3-TKI) have improved outcomes for patients with Flt3-mutated acute myeloid leukemia (AML) but are limited by resistance and relapse, indicating persistence of leukemia stem cells (LSC). Here utilizing a Flt3-internal tandem duplication (Flt3-ITD) and Tet2-deleted AML genetic mouse model we determined that FLT3-ITD AML LSC were enriched within the primitive ST-HSC population. FLT3-ITD LSC showed increased expression of the CXCL12 receptor CXCR4. CXCL12-abundant reticular (CAR) cells were increased in Flt3-ITD AML marrow. CXCL12 deletion from the microenvironment enhanced targeting of AML cells by Flt3-TKI plus chemotherapy treatment, including enhanced LSC targeting. Both treatment and CXCL12 deletion partially reduced p38 mitogen-activated protein kinase (p38) signaling in AML cells and further reduction was seen after treatment in CXCL12 deleted mice. p38 inhibition reduced CXCL12-dependent and -independent maintenance of both murine and human Flt3-ITD AML LSC by MSC and enhanced their sensitivity to treatment. p38 inhibition in combination with chemotherapy plus TKI treatment leads to greater depletion of Flt3-ITD AML LSC compared with CXCL12 deletion. Our studies support roles for CXCL12 and p38 signaling in microenvironmental protection of AML LSC and provide a rationale for inhibiting p38 signaling to enhance Flt3-ITD AML targeting.