Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
122 result(s) for "Croubels, Siska"
Sort by:
Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics
Emerging Fusarium and Alternaria mycotoxins gain more and more interest due to their frequent contamination of food and feed, although in vivo toxicity and toxicokinetic data are limited. Whereas the Fusarium mycotoxins beauvericin, moniliformin and enniatins particularly contaminate grain and grain-based products, Alternaria mycotoxins are also detected in fruits, vegetables and wines. Although contamination levels are usually low (µg/kg range), higher contamination levels of enniatins and tenuazonic acid may occasionally occur. In vitro studies suggest genotoxic effects of enniatins A, A1 and B1, beauvericin, moniliformin, alternariol, alternariol monomethyl ether, altertoxins and stemphyltoxin-III. Furthermore, in vitro studies suggest immunomodulating effects of most emerging toxins and a reproductive health hazard of alternariol, beauvericin and enniatin B. More in vivo toxicity data on the individual and combined effects of these contaminants on reproductive and immune system in both humans and animals is needed to update the risk evaluation by the European Food Safety Authority. Taking into account new occurrence data for tenuazonic acid, the complete oral bioavailability, the low total body clearance in pigs and broiler chickens and the limited toxicity data, a health risk cannot be completely excluded. Besides, some less known Alternaria toxins, especially the genotoxic altertoxins and stemphyltoxin III, should be incorporated in risk evaluation as well.
Comparative Analysis of Hepatic Gene Expression Profiles in Murine and Porcine Sepsis Models
Sepsis remains a huge unmet medical need for which no approved drugs, besides antibiotics, are on the market. Despite the clinical impact of sepsis, its molecular mechanism remains inadequately understood. Recent insights have shown that profound hepatic transcriptional reprogramming, leading to fatal metabolic abnormalities, might open a new avenue to treat sepsis. Translation of experimental results from rodents to larger animal models of higher relevance for human physiology, such as pigs, is critical and needs exploration. We performed a comparative analysis of the transcriptome profiles in murine and porcine livers using the following sepsis models: cecal ligation and puncture (CLP) in mice and fecal instillation (FI) in pigs, both of which induce polymicrobial septic peritonitis, and lipopolysaccharide (LPS)-induced endotoxemia in pigs, inducing sterile inflammation. Using bulk RNA sequencing, Metascape pathway analysis, and HOMER transcription factor motif analysis, we were able to identify key genes and pathways affected in septic livers. Conserved upregulated pathways in murine CLP and porcine LPS and FI generally comprise typical inflammatory pathways, except for ER stress, which was only found in the murine CLP model. Conserved pathways downregulated in sepsis comprise almost exclusively metabolic pathways such as monocarboxylic acid, steroid, biological oxidation, and small-molecule catabolism. Even though the upregulated inflammatory pathways were equally induced in the two porcine models, the porcine FI model more closely resembles the metabolic dysfunction observed in the CLP liver compared to the porcine LPS model. This comprehensive comparison focusing on the hepatic responses in mouse CLP versus LPS or FI in pigs shows that the two porcine sepsis models generally resemble quite well the mouse CLP model, with a typical inflammatory signature amongst the upregulated genes and metabolic dysfunction amongst the downregulated genes. The hepatic ER stress observed in the murine model could not be replicated in the porcine models. When studying metabolic dysfunction in the liver upon sepsis, the porcine FI model more closely resembles the mouse CLP model compared to the porcine LPS model.
Machine learning-aided design of composite mycotoxin detoxifier material for animal feed
The development of food and feed additives involves the design of materials with specific properties that enable the desired function while minimizing the adverse effects related with their interference with the concurrent complex biochemistry of the living organisms. Often, the development process is heavily dependent on costly and time-consuming in vitro and in vivo experiments. Herein, we present an approach to design clay-based composite materials for mycotoxin removal from animal feed. The approach can accommodate various material compositions and different toxin molecules. With application of machine learning trained on in vitro results of mycotoxin adsorption–desorption in the gastrointestinal tract, we have searched the space of possible composite material compositions to identify formulations with high removal capacity and gaining insights into their mode of action. An in vivo toxicokinetic study, based on the detection of biomarkers for mycotoxin-exposure in broilers, validated our findings by observing a significant reduction in systemic exposure to the challenging to be removed mycotoxin, i.e., deoxynivalenol (DON), when the optimal detoxifier is administrated to the animals. A mean reduction of 32% in the area under the plasma concentration–time curve of DON-sulphate was seen in the DON + detoxifier group compared to the DON group ( P  = 0.010).
Storage stability study of porcine hepatic and intestinal cytochrome P450 isoenzymes by use of a newly developed and fully validated highly sensitive HPLC-MS/MS method
Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25–2.5 ng/mL), selective, had good precision (RSD-within, 1.0–9.1%; RSD-between, 1.0–18.4%) and accuracy (within-run, 83.3–102%; between-run, 78.5–102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at − 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at − 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.
Presence of low virulence chytrid fungi could protect European amphibians from more deadly strains
Wildlife diseases are contributing to the current Earth’s sixth mass extinction; one disease, chytridiomycosis, has caused mass amphibian die-offs. While global spread of a hypervirulent lineage of the fungus Batrachochytrium dendrobatidis ( Bd GPL) causes unprecedented loss of vertebrate diversity by decimating amphibian populations, its impact on amphibian communities is highly variable across regions. Here, we combine field data with in vitro and in vivo trials that demonstrate the presence of a markedly diverse variety of low virulence isolates of Bd GPL in northern European amphibian communities. Pre-exposure to some of these low virulence isolates protects against disease following subsequent exposure to highly virulent Bd GPL in midwife toads ( Alytes obstetricans ) and alters infection dynamics of its sister species B. salamandrivorans in newts ( Triturus marmoratus ), but not in salamanders ( Salamandra salamandra ). The key role of pathogen virulence in the complex host-pathogen-environment interaction supports efforts to limit pathogen pollution in a globalized world. The pathogen Batrachochytrium dendrobatidis (BD) associated with widespread amphibian declines is present in Europe but has not consistently caused disease-induced declines in that region. Here, the authors suggest that an endemic strain of BD with low virulence may protect the hosts upon co-infection with more virulent strains.
A High Dose of Dietary Berberine Improves Gut Wall Morphology, Despite an Expansion of Enterobacteriaceae and a Reduction in Beneficial Microbiota in Broiler Chickens
Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. Phytogenic products are embraced as alternatives to antimicrobials, and some are known to mitigate intestinal inflammation and ensure optimal gut health and performance in broiler chickens. Dietary inclusion of berberine, a benzylisoquinoline alkaloid found in plants, is believed to exert gut health-promoting effects through modulation of the gut microbiota; however, there are only a few studies investigating its effects in chickens. The aim of this study was to investigate the interplay between dietary supplementation of a high concentration of berberine, the gastrointestinal microbiota, and histomorphological parameters in the gut. Berberine was shown to increase villus length and decrease crypt depth and CD3 + T-lymphocyte infiltration in the gut tissue of chickens at different ages. Berberine affected the diversity of the gut microbiota from the jejunum to the colon, both at a compositional and functional level, with larger effects observed in the large intestine. A high concentration of berberine enriched members of the Enterobacteriaceae family and depleted members of the Ruminococcaceae , Lachnospiraceae , and Peptostreptococcaceae families, as well as tended to reduce butyrate production in the cecum. In vivo results were confirmed by in vitro growth experiments, where increasing concentrations of berberine inhibited the growth of several butyrate-producing strains while not affecting that of Enterobacteriaceae strains. Positive correlations were found between berberine levels in plasma and villus length or villus-to-crypt ratio in the jejunum. Our study showed that berberine supplementation at a high concentration improves chicken gut morphology toward decreased inflammation, which is likely not mediated by the induced gut microbiota shifts. IMPORTANCE Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. This study investigates for the first time the impact of berberine supplementation on the chicken gastrointestinal microbiota, as a potential mechanism to improve gut health, together with histological effects in the small intestine. This study identified a dose-effect of berberine on the gut microbiota, indicating the importance of finding an optimal dose to be used as a dietary additive.
Pharmacokinetics, absolute bioavailability and tolerability of ketamine after intranasal administration to dexmedetomidine sedated dogs
Intranasal ketamine has recently gained interest in human medicine, not only for its sedative, anaesthetic or analgesic properties, but also in the management of treatment resistant depression, where it has been shown to be an effective, fast acting alternative treatment. Since several similarities are reported between human psychiatric disorders and canine anxiety disorders, intranasal ketamine could serve as an alternative treatment for anxiety disordered dogs. However, to the authors knowledge, intranasal administration of ketamine and its pharmacokinetics have never been described in dogs. Therefore, this study aimed to examine the pharmacokinetics, absolute bioavailability and tolerability of intranasal ketamine administration compared with intravenous administration. Seven healthy, adult laboratory Beagle dogs were included in this randomized crossover study. The dogs received 2 mg/kg body weight ketamine intravenously (IV) or intranasally (IN), with a two-week wash-out period. Prior to ketamine administration, dogs were sedated intramuscularly with dexmedetomidine. Venous blood samples were collected at fixed times until 480 min post-administration and ketamine plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. Cardiovascular parameters and sedation scores were recorded at the same time points. Non-compartmental pharmacokinetic analysis revealed a rapid (Tmax = 0.25 ± 0.14 h) and complete IN bioavailability (F = 147.65 ± 49.97%). Elimination half-life was similar between both administration routes (T1/2el IV = 1.47 ± 0.24 h, T1/2el IN = 1.50 ± 0.97 h). Heart rate and sedation scores were significantly higher at 5 and 10 min following IV administration compared to IN administration, but not at the later time-points.
Deoxynivalenol Impairs Hepatic and Intestinal Gene Expression of Selected Oxidative Stress, Tight Junction and Inflammation Proteins in Broiler Chickens, but Addition of an Adsorbing Agent Shifts the Effects to the Distal Parts of the Small Intestine
Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. However, effects of subclinical concentrations of deoxynivalenol on both the intestine and the liver are less frequently studied at the molecular level. During our study, we investigated the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal barrier function and inflammation in broiler chickens. In addition, oxidative stress was evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin adsorbing agent on these different aspects was also studied. Our results show that feeding deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, while in combination with an adsorbing agent main effect was seen in the ileum. These results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to feeding DON but also due to feeding the adsorbing agent alone or in combination with DON.
Multi LC-MS/MS and LC-HRMS Methods for Determination of 24 Mycotoxins including Major Phase I and II Biomarker Metabolites in Biological Matrices from Pigs and Broiler Chickens
A reliable and practical multi-method was developed for the quantification of mycotoxins in plasma, urine, and feces of pigs, and plasma and excreta of broiler chickens using liquid chromatography–tandem mass spectrometry. The targeted mycotoxins belong to the regulated groups, i.e., aflatoxins, ochratoxin A and Fusarium mycotoxins, and to two groups of emerging mycotoxins, i.e., Alternaria mycotoxins and enniatins. In addition, the developed method was transferred to a LC-high resolution mass spectrometry instrument to qualitatively determine phase I and II metabolites, for which analytical standards are not always commercially available. Sample preparation of plasma was simple and generic and was accomplished by precipitation of proteins alone (pig) or in combination with removal of phospholipids (chicken). A more intensive sample clean-up of the other matrices was needed and consisted of a pH-dependent liquid–liquid extraction (LLE) using ethyl acetate (pig urine), methanol/ethyl acetate/formic acid (75/24/1, v/v/v) (pig feces) or acetonitrile (chicken excreta). For the extraction of pig feces, additionally a combination of LLE using acetone and filtration of the supernatant on a HybridSPE-phospholipid cartridge was applied. The LC-MS/MS method was in-house validated according to guidelines defined by the European and international community. Finally, the multi-methods were successfully applied in a specific toxicokinetic study and a screening study to monitor the exposure of individual animals.
Cefquinome shows a higher impact on the pig gut microbiome and resistome compared to ceftiofur
Cephalosporins are licensed for treatment of severe bacterial infections in different species. However, the effect of these antimicrobials on the fecal microbiome and potential spread of resistance-associated genes causes great concern. This highlights the need to understand the impact of cephalosporins on the porcine fecal microbiome and resistome. A combination of long-read 16S rRNA gene and shotgun metagenomic sequencing was applied to investigate the effect of conventional treatment with either ceftiofur (3 mg.kg −1 intramuscular, 3 consecutive days) or cefquinome (2 mg.kg −1 intramuscular, 5 consecutive days) on the porcine microbiome and resistome. Fecal samples were collected from 17 pigs (6 ceftiofur treated, 6 cefquinome treated, 5 control pigs) at four different timepoints. Treatment with ceftiofur resulted in an increase in Proteobacteria members on microbiome level, while on resistome level selection in TetQ containing Bacteroides , CfxA6 containing Prevotella and bla TEM-1 containing Escherichia coli was observed. Cefquinome treatment resulted in a decline in overall species richness (α-diversity) and increase in Proteobacteria members. On genus level, administration of cefquinome significantly affected more genera than ceftiofur (18 vs 8). On resistome level, cefquinome resulted in a significant increase of six antimicrobial resistance genes, with no clear correlation with certain genera. For both antimicrobials, the resistome levels returned back to the control levels 21 days post-treatment. Overall, our study provides novel insights on the effect of specific cephalosporins on the porcine gut microbiome and resistome after conventional intramuscular treatment. These results might contribute to better tailoring of the most ideal treatment strategy for some bacterial infections.