Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
222 result(s) for "Crowley, Stephanie"
Sort by:
A Longitudinal Assessment of Sleep Timing, Circadian Phase, and Phase Angle of Entrainment across Human Adolescence
The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9-10 years (\"younger cohort\") and 56 (30 boys) were 15-16 years (\"older cohort\") at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy).
Gut microbiota alterations in response to sleep length among African-origin adults
Sleep disorders are increasingly being characterized in modern society as contributing to a host of serious medical problems, including obesity and metabolic syndrome. Changes to the microbial community in the human gut have been reportedly associated with many of these cardiometabolic outcomes. In this study, we investigated the impact of sleep length on the gut microbiota in a large cohort of 655 participants of African descent, aged 25–45, from Ghana, South Africa (SA), Jamaica, and the United States (US). The sleep duration was self-reported via a questionnaire. Participants were classified into 3 sleep groups: short (<7hrs), normal (7-<9hrs), and long (≥9hrs). Forty-seven percent of US participants were classified as short sleepers and 88% of SA participants as long sleepers. Gut microbial composition analysis (16S rRNA gene sequencing) revealed that bacterial alpha diversity negatively correlated with sleep length (p<0.05). Furthermore, sleep length significantly contributed to the inter-individual beta diversity dissimilarity in gut microbial composition (p<0.01). Participants with both short and long-sleep durations exhibited significantly higher abundances of several taxonomic features, compared to normal sleep duration participants. The predicted relative proportion of two genes involved in the butyrate synthesis via lysine pathway were enriched in short sleep duration participants. Finally, co-occurrence relationships revealed by network analysis showed unique interactions among the short, normal and long duration sleepers. These results suggest that sleep length in humans may alter gut microbiota by driving population shifts of the whole microbiota and also specific changes in Exact Sequence Variants abundance, which may have implications for chronic inflammation associated diseases. The current findings suggest a possible relationship between disrupted sleep patterns and the composition of the gut microbiota. Prospective investigations in larger and more prolonged sleep researches and causally experimental studies are needed to confirm these findings, investigate the underlying mechanism and determine whether improving microbial homeostasis may buffer against sleep-related health decline in humans.
De novo design of potent and selective mimics of IL-2 and IL-15
We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor βγ c heterodimer (IL-2Rβγ c ) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rβγ c with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rβγ c , are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates. A hyper-stable de novo protein mimic of interleukin-2 computationally designed to not interact with a regulatory T-cell specific receptor subunit has improved therapeutic activity in mouse models of melanoma and colon cancer.
Workshop report. Circadian rhythm sleep–wake disorders: gaps and opportunities
Abstract This White Paper presents the results from a workshop cosponsored by the Sleep Research Society (SRS) and the Society for Research on Biological Rhythms (SRBR) whose goals were to bring together sleep clinicians and sleep and circadian rhythm researchers to identify existing gaps in diagnosis and treatment and areas of high-priority research in circadian rhythm sleep–wake disorders (CRSWD). CRSWD are a distinct class of sleep disorders caused by alterations of the circadian time-keeping system, its entrainment mechanisms, or a misalignment of the endogenous circadian rhythm and the external environment. In these disorders, the timing of the primary sleep episode is either earlier or later than desired, irregular from day-to-day, and/or sleep occurs at the wrong circadian time. While there are incomplete and insufficient prevalence data, CRSWD likely affect at least 800,000 and perhaps as many as 3 million individuals in the United States, and if Shift Work Disorder and Jet Lag are included, then many millions more are impacted. The SRS Advocacy Taskforce has identified CRSWD as a class of sleep disorders for which additional high-quality research could have a significant impact to improve patient care. Participants were selected for their expertise and were assigned to one of three working groups: Phase Disorders, Entrainment Disorders, and Other. Each working group presented a summary of the current state of the science for their specific CRSWD area, followed by discussion from all participants. The outcome of those presentations and discussions are presented here.
Anti–CTLA-4 therapy requires an Fc domain for efficacy
Ipilimumab, a monoclonal antibody that recognizes cytotoxic T lymphocyte antigen (CTLA)-4, was the first approved “checkpoint”-blocking anticancer therapy. In mouse tumor models, the response to antibodies against CTLA-4 depends entirely on expression of the Fcγ receptor (FcγR), which may facilitate antibody-dependent cellular phagocytosis, but the contribution of simple CTLA-4 blockade remains unknown. To understand the role of CTLA-4 blockade in the complete absence of Fc-dependent functions, we developed H11, a high-affinity alpaca heavy chain-only antibody fragment (VHH) against CTLA-4. The VHH H11 lacks an Fc portion, binds monovalently to CTLA-4, and inhibits interactions between CTLA-4 and its ligand by occluding the ligand-binding motif on CTLA-4 as shown crystallographically. We used H11 to visualize CTLA-4 expression in vivo using whole-animal immuno-PET, finding that surface-accessible CTLA-4 is largely confined to the tumor microenvironment. Despite this, H11-mediated CTLA-4 blockade has minimal effects on antitumor responses. Installation of the murine IgG2a constant region on H11 dramatically enhances its antitumor response. Coadministration of the monovalent H11 VHH blocks the efficacy of a full-sized therapeutic antibody. We were thus able to demonstrate that CTLA-4–binding antibodies require an Fc domain for antitumor effect.
Potential circadian and circannual rhythm contributions to the obesity epidemic in elementary school age children
Children gain weight at an accelerated rate during summer, contributing to increases in the prevalence of overweight and obesity in elementary-school children (i.e., approximately 5 to 11 years old in the US). Int J Behav Nutr Phys Act 14:100, 2017 explained these changes with the “Structured Days Hypothesis” suggesting that environmental changes in structure between the school year and the summer months result in behavioral changes that ultimately lead to accelerated weight gain. The present article explores an alternative explanation, the circadian clock, including the effects of circannual changes and social demands (i.e., social timing resulting from societal demands such as school or work schedules), and implications for seasonal patterns of weight gain. We provide a model for understanding the role circadian and circannual rhythms may play in the development of child obesity, a framework for examining the intersection of behavioral and biological causes of obesity, and encouragement for future research into bio-behavioral causes of obesity in children.
Extending weeknight sleep of delayed adolescents using weekend morning bright light and evening time management
Abstract Study Objectives Shift sleep onset earlier and extend school-night sleep duration of adolescents. Methods Forty-six adolescents (14.5–17.9 years; 24 females) with habitual short sleep (≤7 h) and late bedtimes (≥23:00) on school nights slept as usual for 2 weeks (baseline). Then, there were three weekends and two sets of five weekdays in between. Circadian phase (Dim Light Melatonin Onset, DLMO) was measured in the laboratory on the first and third weekend. On weekdays, the “Intervention” group gradually advanced school-night bedtime (1 h earlier than baseline during week 1; 2 h earlier than baseline during week 2). Individualized evening time management plans (“Sleep RouTeen”) were developed to facilitate earlier bedtimes. On the second weekend, Intervention participants received bright light (~6000 lux; 2.5 h) on both mornings. A control group completed the first and third weekend but not the second. They slept as usual and had no evening time management plan. Weekday sleep onset time and duration were derived from actigraphy. Results Dim light melatonin onset (DLMO) advanced more in the Intervention (0.6 ± 0.8 h) compared to the Control (−0.1 ± 0.8 h) group. By week 2, the Intervention group fell asleep 1.5 ± 0.7 h earlier and sleep duration increased by 1.2 ± 0.7 h; sleep did not systematically change in the Control group. Conclusions This multi-pronged circadian-based intervention effectively increased school-night sleep duration for adolescents reporting chronic sleep restriction. Adolescents with early circadian phases may only need a time management plan, whereas those with later phases probably need both time management and morning bright light. Clinical Trials Teen School-Night Sleep Extension: An Intervention Targeting the Circadian System (#NCT04087603): https://clinicaltrials.gov/ct2/show/NCT04087603 Graphical Abstract Graphical Abstract
Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans
Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals.
Circadian Phase Advances in Response to Weekend Morning Light in Adolescents With Short Sleep and Late Bedtimes on School Nights
Many adolescents fall asleep too late to get enough sleep (8-10 h) on school nights. Morning bright light advances circadian rhythms and could help adolescents fall asleep earlier. Morning bright light treatment before school, however, is difficult to fit into their morning schedule; weekends are more feasible. We examined phase advances in response to morning light treatment delivered over one weekend. Thirty-seven adolescents (16 males; 14.7-18.0 years) who reported short school-night sleep (≤7 h) and late bedtimes (school-nights ≥23:00; weekend/non-school nights ≥24:00) slept as usual at home for ∼2 weeks (\"baseline\") and then kept a fixed sleep schedule (baseline school-night bed and wake-up times ±30 min) for ∼1 week before living in the lab for one weekend. Sleep behavior was measured with wrist actigraphy and sleep diary. On Saturday morning, we woke each participant 1 h after his/her midpoint of baseline weekend/non-school night sleep and 1 h earlier on Sunday. They remained in dim room light (∼20 lux) or received 1.5 or 2.5 h of intermittent morning bright light (∼6000 lux) on both mornings. The dim light melatonin onset (DLMO), a phase marker of the circadian timing system, was measured on Friday and Sunday evenings to compute the weekend circadian phase shift. The dim room light and 1.5-h bright light groups advanced the same amount (0.6 ± 0.4 and 0.6 ± 0.5 h). The 2.5-h bright light group advanced 1.0 ± 0.4 h, which was significantly more than the other groups. These data suggest that it is possible to phase advance the circadian clock of adolescents who have late bedtimes and short school-night sleep in one weekend using light that begins shortly after their sleep midpoint.
Associations between fears related to safety during sleep and self-reported sleep in men and women living in a low-socioeconomic status setting
South Africans living in low socioeconomic areas have self-reported unusually long sleep durations (approximately 9–10 h). One hypothesis is that these long durations may be a compensatory response to poor sleep quality as a result of stressful environments. This study aimed to investigate whether fear of not being safe during sleep is associated with markers of sleep quality or duration in men and women. South Africans (n = 411, 25–50 y, 57% women) of African-origin living in an urban township, characterised by high crime and poverty rates, participated in this study. Participants are part of a larger longitudinal cohort study: Modelling the Epidemiologic Transition Study (METS)–Microbiome. Customised questions were used to assess the presence or absence of fears related to feeling safe during sleep, and the Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index were used to assess daytime sleepiness, sleep quality and insomnia symptom severity respectively. Adjusted logistic regression models indicated that participants who reported fears related to safety during sleep were more likely to report poor sleep quality (PSQI > 5) compared to participants not reporting such fears and that this relationship was stronger among men than women. This is one of the first studies outside American or European populations to suggest that poor quality sleep is associated with fear of personal safety in low-SES South African adults.