Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
229 result(s) for "Cruz, Darío"
Sort by:
Cryptic species revealed by molecular phylogenetic analysis of sequences obtained from basidiomata of Tulasnella
Delimitation of species and the search for a proper threshold for defining phylogenetic species in fungi are under discussion. In this study, morphological and molecular data are correlated to delimit species of Tulasnella, the most important mycobionts of Orchidaceae, which suffer from poor taxonomy. Resupinate basidiomata of Tulasnella species were collected in Ecuador and Germany, and 11 specimens (seven from Ecuador, four from Germany) were assigned to traditional species concepts by use of morphological keys. The specimens were compared by micro-anatomical examination with 75 specimens of Tulasnella borrowed from fungaria to obtain better insights on variation of characters. Sequences of the ITS region (127) were obtained after cloning from the fresh basidiomata and from pure cultures. Proportional variability of ITS sequences was analyzed within and among the cultures and the specimens designated to different morphospecies. Results suggested an intragenomic variation of less than 2%, an intraspecific variation of up to 4% and an interspecific divergence of more than 9% in Tulasnella. Cryptic species in Tulasnella, mostly from Ecuador, were revealed by phylogenetic analyses with 4% intraspecific divergence as a minimum threshold for delimiting species. Conventional diagnostic morphological characters appeared insufficient for species characterization. Arguments are presented for molecular delimitation of the established species Tulasnella albida, T. asymmetrica, T. eichleriana, T. cf. pinicola, T. tomaculum and T. violea.
Microalgal Diversity as Bioindicators for Assessing and Sustaining Water Quality in the High Mountain Lakes of Quimsacocha, Azuay, Ecuador
Phytoplankton has an essential role as a primary producer in lakes, providing information on environmental conditions and water quality. The objective of this research was to inventory, characterize, and assess the diversity of microalgae in the Quimsacocha lake system in Azuay, Ecuador. Water samples were collected from the two most important Quimsacocha lakes to morphologically characterize the microalgae and evaluate their diversity. The diversity and physicochemical parameters were measured to evaluate and explain differences in community richness and composition using multivariate analysis (NMDS and PERMANOVA). The level of organic pollution in the lakes was estimated using the Pollution Index, and the trophic status was assessed using dominant phytoplankton (AARL-PP Score). Eighty morphospecies were identified within 25 genera, 16 families and 8 classes. The Bacillariophyceae class was the most diverse, represented by five families. The genera Synedra, Chlorella, and Cosmarium were the most abundant, suggesting a moderate level of organic pollution and a mesotrophic state in the lakes. Physicochemical parameters such as temperature, pH, dissolved oxygen and electrical conductivity were similar in both lakes. Nonetheless, the lake depth was different, varying between 0.9 and 8 m in LQA (with one extreme value of 22 m), compared to LQB, which had depths between 7 and 19 m. Alpha diversity revealed a significant difference (p = 0.0001) in species abundance between the two lakes, while specific richness was similar (p = 0.8213). In terms of beta diversity, a significant difference in species composition was observed (p = 0.001). This study provides base-line information regarding the ecological status of these Andean lakes, being of great help in developing conservation plans to preserve their biodiversity and water quality for human consumption.
Advancing Waterborne Fungal Spore Control: UV-LED Disinfection Efficiency and Post-Treatment Reactivation Analysis
The presence of fungal spores in water poses a significant risk to public health, requiring effective inactivation strategies. Ultraviolet (UV) radiation is a widely used approach, traditionally employing mercury vapor lamps. However, these lamps have efficiency limitations and contain hazardous materials. As an alternative, ultraviolet lightemitting diodes (UV-LEDs) have emerged as a safer and more sustainable option. Despite their advantages, research on their efficacy against fungal spores remains limited. This study investigates the inactivation and post-exposure response of Aspergillus niger and Penicillium sp. spores using a collimated UV-LED system. The impact of two different wavelengths (265 nm and 280 nm) and post-treatment conditions (light and darkness for 24 h) on fungal viability was analyzed. Kinetic modeling was applied to assess the resistance of the spores and their capacity for photoreactivation. The results demonstrate that both the UV wavelength and the environmental conditions after exposure significantly influence disinfection outcomes. Penicillium sp. exhibited greater susceptibility to UV radiation but also higher photoreactivation potential, while A. niger showed stronger resistance and lower recovery capacity. The UV dose required for 99% inactivation, considering photoreactivation effects, was 323.7 ± 90.0 mJ cm−2 and 321.9 ± 43.8 mJ cm−2 for A. niger, whereas for Penicillium sp., it was 167.7 ± 13.0 mJ cm−2 and 146.5 ± 29.2 mJ cm−2 at 265 nm and 280 nm, respectively. These findings emphasize the necessity of tailoring UV-LED disinfection strategies based on the specific characteristics of the target organisms and post-treatment environmental factors.
Defining species in Tulasnella by correlating morphology and nrDNA ITS-5.8S sequence data of basidiomata from a tropical Andean forest
The genus Tulasnella comprises important orchid mycobionts. Molecular phylogenetic studies on nrITS-5.8S sequences of Tulasnella species previously isolated from mycorrhizas of epiphytic orchids from a tropical Andean forest showed genomic variability among clones which was difficult to interpret as intra- or interspecific variations or to correlate with described Tulasnella species. To improve this situation, we collected basidiomata of Tulasnella in an Andean forest, studied part of the sequences of fungal ribosomal genes and correlated molecular data with the morphology of the specimens. Within five basidiomata displaying slight morphological variability, we found inter-specimen nrITS1-5.8S-ITS2 variability corresponding to proportional differences of less than 1% except for one clone with 5.1% divergence. Results indicate that the slightly variable basidiomata should be considered as one species, which is morphologically tentatively assigned to the Tulasnella pruinosa complex. However, comparison of nrITS1-5.8S-ITS2 sequences, including sequences of T. pruinosa from other origins, indicate that Tulasnella sp. is only distantly related to the T. pruinosa specimens included in the analyses. Sequences of all morphologically similar and taxonomically well-identified species are required to decide whether the basidiomata analyzed in the present study represent a new species. The new sequences are rather similar to sequences obtained previously from mycorrhizae of epiphytic orchids of the same area indicating mycorrhizal potential of this fungus.
Fungal Diversity in the Dry Forest and Salt Flat Ecosystems of Reserva Ecologica Arenillas, El Oro, Ecuador
Fungi are a diverse and essential group that play crucial ecological roles. However, they remain understudied in tropical countries like Ecuador in terms of their forest or protected areas, particularly across diverse ecosystem zones such as seasonal forests and salt flats. This study aimed to inventory fungal diversity in two specific zones: the dry forest (DF) and the salt flat (SF) within the Reserva Ecologica Arenillas (REAR), located in El Oro, Ecuador. The results recorded 162 specimens representing 47 species belonging to 34 genera, identified morphologically. Although statistically significant, the difference in species richness and abundance between the dry forest and the salt flat was minimal, with the dry forest showing slightly higher values. Nonetheless, certain species were prevalent in both ecosystems, such as Cerrena hydnoides, Pycnoporus sanguineus, Hexagonia tenuis, and Chondrostereum sp., alongside four species with resupinate habit, all of them growing on decayed wood. The Shannon and Simpson indices were calculated to assess alpha diversity, revealing higher diversity in the DF. To evaluate differences in community composition between habitats, non-metric multidimensional scaling (NMDS) and permutational analysis of variance (PERMANOVA) were applied, indicating greater species turnover and dominance of specific taxa in the DF compared to the SF. These findings highlight the importance of the fungal diversity found in the REAR while also pointing to the need for more exhaustive monitoring and comparative studies with other wild or protected areas to fully understand and conserve this biodiversity.
Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador
Coffee production worldwide is affected by the pathogen Hemileia vastatrix, which causes the “coffee rust” disease and may be associated with other fungi. Ecuador lacks studies on fungal diversity associated with coffee rust, which could potentially control or escalate pathogen activity. Using the ITS-5.8S nrDNA region, we randomly detected a small preliminary fungi diversity related to coffee rust in Ecuador, which we report here for the first time. Ten coffee farms (four in Loja, three in Calvas, and three in Quilanga) from the Loja Province were sampled to analyze the genetic diversity of the pathogen Hemileia vastatrix in rust lesions on coffee leaves. A high number of selected sequences (Sanger sequencing) showed the presence of 48 OTUs (Operational Taxonomic Units) or “hypothetical species” of Ascomycetes and Basidiomycetes distributed across all the sampled farms. The genera Akanthomyces, Ceramothyrium, Cladosporium, Didymella, Fusarium, Mycosphaerella, Neoceratosperma, and Trichothecium of Ascomycetes, as well as Bulleribasidium, Hannaella, and Meira of Basidiomycetes, were the most abundant. To avoid taxonomic conflict, some sequences were placed into Capnodiales (Ascomycetes) and Tremelalles (Basidiomycetes) without a genus definition. A new phylogenetic group of sequences is considered Incertae Sedis from Basidiomycetes. Additionally, morphospecies of Akanthomyces (synonymous with some Lecanicillium species) and Colletotrichum were observed macroscopically and microscopically growing closely with rust. Most of the OTUs probably correspond to rust mycoparasites, as previously reported in the literature. However, this study is limited by the number of sequences analyzed phylogenetically, which may hinder the discovery of significant insights. Future studies are needed to determine whether this preliminary fungal diversity is associated with the rust fungus or corresponds to ubiquitous airborne fungi. Furthermore, research into the function of these species may reveal whether they promote rust pathogenicity or enhance plant responses by activating resistance mechanisms.
Phenotypic and Molecular Characterization of Yeast Diversity Associated to Postharvest Fermentation Process of Coffee Fruits in Southern Ecuador
Coffee (Coffea arabica), produced and marketed in Ecuador and worldwide, can be organoleptically improved by means of microorganisms such as well-characterized yeasts. This study aimed to isolate and characterize yeasts from three postharvest fermentation processes (i.e., Natural aerobic at room temperature; Carbonic maceration with a CO2 atmosphere at room temperature; and Carbonic refrigerated maceration with a CO2 atmosphere to 10 °C) of coffee fruits in Ecuador. Phenotypic and molecular analyses were conducted on 329 yeast isolates obtained from coffee farms in Loja, Olmedo, and Gonzanamá. Three universal media were used for yeast isolation diversity, and phenotypic characterization included morphology, sugar fermentation, salt tolerance, and ethanol resistance. Molecular characterization involved DNA analysis. The isolated diversity was classified into 12 morphotypes, nine distinct biochemical groups and nine genetic species. Only six species (i.e., Kurtzmaniella quercitrusa, Hanseniaspora opuntiae, Pichia. kluyveri, Torulaspora delbrueckii, T. quercuum, and Wickerhamomyces anomalus) identified phylogenetically corresponded to the designated morphotypes. But surprisingly, nine genetic species matched with the nine biochemical groups determined phenotypically analyzed using principal component analysis (PCA). Most of this diversity was found in the coffee plantation located in Gonzanamá, in contrast to Olmedo and Loja, without statistical significance (p value: 0.08295). On the other hand, the richness is not similar statistically (p value: 0.02991) between postharvest fermentation treatments. The findings suggest that the application of biochemical tests is useful for species determination, although morphological data may be ambiguous. Notably, Pichia kluyveri, detected in this study, holds potential for biotechnological evaluation in coffee fermentation processes.
Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas
The mangrove biome is a highly productive system globally, with flora and fauna adapted to significant saline influence, where salt flats coexist alongside these systems, emerging over sands and muds with high salinity and sparse vegetation. The objective of this research is to describe, for the first time in Ecuador, the diversity of epiphytic lichens in salt flats in the southern region of Ecuador. Two salt flats were selected where Avicennia germinans and Laguncularia racemosa were the dominant trees with the shrub Batis maritima. A total of 30 species of epiphytic lichens were recorded, with the families Arthoniaceae, Graphidaceae, and Ramalinaceae having the highest number of species, and crustose lichens with photobiont type Trentepohlia showed high richness. The salt flats in the southern region of Ecuador have a high richness of epiphytic lichen species, and the species composition is similar to mangroves, highlighting the importance of their conservation as biodiversity refuges for lichens and consequently other flora and fauna groups. Therefore, epiphytic lichens in salt flats can be used as model organisms to assess their conservation in tropical areas.
PFRED: A computational platform for siRNA and antisense oligonucleotides design
PFRED a software application for the design, analysis, and visualization of antisense oligonucleotides and siRNA is described. The software provides an intuitive user-interface for scientists to design a library of siRNA or antisense oligonucleotides that target a specific gene of interest. Moreover, the tool facilitates the incorporation of various design criteria that have been shown to be important for stability and potency. PFRED has been made available as an open-source project so the code can be easily modified to address the future needs of the oligonucleotide research community. A compiled version is available for downloading at https://github.com/pfred/pfred-gui/releases/tag/v1.0 as a java Jar file. The source code and the links for downloading the precompiled version can be found at https://github.com/pfred .
Staurosporine from Streptomyces sanyensis activates Programmed Cell Death in Acanthamoeba via the mitochondrial pathway and presents low in vitro cytotoxicity levels in a macrophage cell line
Recently, the search for novel therapeutic agents against Acanthamoeba species has been focused on the evaluation of natural resources. Among them, marine microorganisms have risen as a source of bioactive compounds with the advantage of the ability to obtain unlimited and constant amounts of the compounds in contrast to other natural sources such as plants. Furthermore, marine actinomycetes have recently been reported as highly rich in bioactive agents including salinosporamides, xiamycines, indolocarbazoles, naphtyridines, phenols, dilactones such as antimycines and macrolides among others. In this study, staurosporine (STS) was isolated from a strain of Streptomyces sanyensis and tested against Acanthamoeba to characterize the therapeutic potential of STS against this protozoan parasite. We have established that STS is active against both stages of the Acanthamoeba life cycle, by the activation of Programmed Cell Death via the mitochondrial pathway of the trophozoite. We have also established that STS has relatively low toxicity towards a macrophage cell line. However, previous studies have highlighted higher toxicity levels induced on other vertebrate cell lines and future research to lower these toxicity issues should be developed.