Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
229
result(s) for
"Cruz, Dario"
Sort by:
PFRED: A computational platform for siRNA and antisense oligonucleotides design
by
Lawrence, Christine
,
Sciabola, Simone
,
Xi, Hualin
in
Algorithms
,
Alternative splicing
,
Antisense oligonucleotides
2021
PFRED a software application for the design, analysis, and visualization of antisense oligonucleotides and siRNA is described. The software provides an intuitive user-interface for scientists to design a library of siRNA or antisense oligonucleotides that target a specific gene of interest. Moreover, the tool facilitates the incorporation of various design criteria that have been shown to be important for stability and potency. PFRED has been made available as an open-source project so the code can be easily modified to address the future needs of the oligonucleotide research community. A compiled version is available for downloading at https://github.com/pfred/pfred-gui/releases/tag/v1.0 as a java Jar file. The source code and the links for downloading the precompiled version can be found at https://github.com/pfred .
Journal Article
Fungal Diversity in the Dry Forest and Salt Flat Ecosystems of Reserva Ecologica Arenillas, El Oro, Ecuador
2025
Fungi are a diverse and essential group that play crucial ecological roles. However, they remain understudied in tropical countries like Ecuador in terms of their forest or protected areas, particularly across diverse ecosystem zones such as seasonal forests and salt flats. This study aimed to inventory fungal diversity in two specific zones: the dry forest (DF) and the salt flat (SF) within the Reserva Ecologica Arenillas (REAR), located in El Oro, Ecuador. The results recorded 162 specimens representing 47 species belonging to 34 genera, identified morphologically. Although statistically significant, the difference in species richness and abundance between the dry forest and the salt flat was minimal, with the dry forest showing slightly higher values. Nonetheless, certain species were prevalent in both ecosystems, such as Cerrena hydnoides, Pycnoporus sanguineus, Hexagonia tenuis, and Chondrostereum sp., alongside four species with resupinate habit, all of them growing on decayed wood. The Shannon and Simpson indices were calculated to assess alpha diversity, revealing higher diversity in the DF. To evaluate differences in community composition between habitats, non-metric multidimensional scaling (NMDS) and permutational analysis of variance (PERMANOVA) were applied, indicating greater species turnover and dominance of specific taxa in the DF compared to the SF. These findings highlight the importance of the fungal diversity found in the REAR while also pointing to the need for more exhaustive monitoring and comparative studies with other wild or protected areas to fully understand and conserve this biodiversity.
Journal Article
Fungal Diversity Detected by ITS-5.8S from Coffea arabica Leaves Infected by Rust (Hemileia vastatrix) in Southern Ecuador
by
Cruz, Darío
,
Herrera, Paulo
,
Aguinsaca, Ruth
in
Agricultural and Biological Sciences (miscellaneous)
,
Airborne microorganisms
,
Analysis
2024
Coffee production worldwide is affected by the pathogen Hemileia vastatrix, which causes the “coffee rust” disease and may be associated with other fungi. Ecuador lacks studies on fungal diversity associated with coffee rust, which could potentially control or escalate pathogen activity. Using the ITS-5.8S nrDNA region, we randomly detected a small preliminary fungi diversity related to coffee rust in Ecuador, which we report here for the first time. Ten coffee farms (four in Loja, three in Calvas, and three in Quilanga) from the Loja Province were sampled to analyze the genetic diversity of the pathogen Hemileia vastatrix in rust lesions on coffee leaves. A high number of selected sequences (Sanger sequencing) showed the presence of 48 OTUs (Operational Taxonomic Units) or “hypothetical species” of Ascomycetes and Basidiomycetes distributed across all the sampled farms. The genera Akanthomyces, Ceramothyrium, Cladosporium, Didymella, Fusarium, Mycosphaerella, Neoceratosperma, and Trichothecium of Ascomycetes, as well as Bulleribasidium, Hannaella, and Meira of Basidiomycetes, were the most abundant. To avoid taxonomic conflict, some sequences were placed into Capnodiales (Ascomycetes) and Tremelalles (Basidiomycetes) without a genus definition. A new phylogenetic group of sequences is considered Incertae Sedis from Basidiomycetes. Additionally, morphospecies of Akanthomyces (synonymous with some Lecanicillium species) and Colletotrichum were observed macroscopically and microscopically growing closely with rust. Most of the OTUs probably correspond to rust mycoparasites, as previously reported in the literature. However, this study is limited by the number of sequences analyzed phylogenetically, which may hinder the discovery of significant insights. Future studies are needed to determine whether this preliminary fungal diversity is associated with the rust fungus or corresponds to ubiquitous airborne fungi. Furthermore, research into the function of these species may reveal whether they promote rust pathogenicity or enhance plant responses by activating resistance mechanisms.
Journal Article
Phenotypic and Molecular Characterization of Yeast Diversity Associated to Postharvest Fermentation Process of Coffee Fruits in Southern Ecuador
by
Cruz, Darío
,
Figueroa, Jorge G.
,
Benítez, Ángel
in
Agriculture
,
ambient temperature
,
Antibiotics
2023
Coffee (Coffea arabica), produced and marketed in Ecuador and worldwide, can be organoleptically improved by means of microorganisms such as well-characterized yeasts. This study aimed to isolate and characterize yeasts from three postharvest fermentation processes (i.e., Natural aerobic at room temperature; Carbonic maceration with a CO2 atmosphere at room temperature; and Carbonic refrigerated maceration with a CO2 atmosphere to 10 °C) of coffee fruits in Ecuador. Phenotypic and molecular analyses were conducted on 329 yeast isolates obtained from coffee farms in Loja, Olmedo, and Gonzanamá. Three universal media were used for yeast isolation diversity, and phenotypic characterization included morphology, sugar fermentation, salt tolerance, and ethanol resistance. Molecular characterization involved DNA analysis. The isolated diversity was classified into 12 morphotypes, nine distinct biochemical groups and nine genetic species. Only six species (i.e., Kurtzmaniella quercitrusa, Hanseniaspora opuntiae, Pichia. kluyveri, Torulaspora delbrueckii, T. quercuum, and Wickerhamomyces anomalus) identified phylogenetically corresponded to the designated morphotypes. But surprisingly, nine genetic species matched with the nine biochemical groups determined phenotypically analyzed using principal component analysis (PCA). Most of this diversity was found in the coffee plantation located in Gonzanamá, in contrast to Olmedo and Loja, without statistical significance (p value: 0.08295). On the other hand, the richness is not similar statistically (p value: 0.02991) between postharvest fermentation treatments. The findings suggest that the application of biochemical tests is useful for species determination, although morphological data may be ambiguous. Notably, Pichia kluyveri, detected in this study, holds potential for biotechnological evaluation in coffee fermentation processes.
Journal Article
Epiphytic Lichens in Salt Flats as Biodiversity Refuges in Reserva Ecológica Arenillas
by
López, Fausto
,
Cruz, Darío
,
Benítez, Ángel
in
Biodiversity
,
Biological diversity
,
Biological diversity conservation
2024
The mangrove biome is a highly productive system globally, with flora and fauna adapted to significant saline influence, where salt flats coexist alongside these systems, emerging over sands and muds with high salinity and sparse vegetation. The objective of this research is to describe, for the first time in Ecuador, the diversity of epiphytic lichens in salt flats in the southern region of Ecuador. Two salt flats were selected where Avicennia germinans and Laguncularia racemosa were the dominant trees with the shrub Batis maritima. A total of 30 species of epiphytic lichens were recorded, with the families Arthoniaceae, Graphidaceae, and Ramalinaceae having the highest number of species, and crustose lichens with photobiont type Trentepohlia showed high richness. The salt flats in the southern region of Ecuador have a high richness of epiphytic lichen species, and the species composition is similar to mangroves, highlighting the importance of their conservation as biodiversity refuges for lichens and consequently other flora and fauna groups. Therefore, epiphytic lichens in salt flats can be used as model organisms to assess their conservation in tropical areas.
Journal Article
Staurosporine from Streptomyces sanyensis activates Programmed Cell Death in Acanthamoeba via the mitochondrial pathway and presents low in vitro cytotoxicity levels in a macrophage cell line
2019
Recently, the search for novel therapeutic agents against
Acanthamoeba
species has been focused on the evaluation of natural resources. Among them, marine microorganisms have risen as a source of bioactive compounds with the advantage of the ability to obtain unlimited and constant amounts of the compounds in contrast to other natural sources such as plants. Furthermore, marine actinomycetes have recently been reported as highly rich in bioactive agents including salinosporamides, xiamycines, indolocarbazoles, naphtyridines, phenols, dilactones such as antimycines and macrolides among others. In this study, staurosporine (STS) was isolated from a strain of
Streptomyces sanyensis
and tested against
Acanthamoeba
to characterize the therapeutic potential of STS against this protozoan parasite. We have established that STS is active against both stages of the
Acanthamoeba
life cycle, by the activation of Programmed Cell Death via the mitochondrial pathway of the trophozoite. We have also established that STS has relatively low toxicity towards a macrophage cell line. However, previous studies have highlighted higher toxicity levels induced on other vertebrate cell lines and future research to lower these toxicity issues should be developed.
Journal Article
Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
by
Bain, Erich D.
,
Dennis, Joseph M.
,
Andzelm, Jan W.
in
Bisphenol A
,
Brittle fracture
,
Computer simulation
2021
Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction–separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters.
Journal Article
Screening of Antibacterial Activity of Some Resupinate Fungi, Reveal Gloeocystidiellum lojanense sp. nov. (Russulales) against E. coli from Ecuador
by
Suárez, Juan Pablo
,
Cruz, Darío
,
Benítez, Ángel
in
Antibacterial activity
,
Antibiotics
,
Bacteria
2022
Bacterial resistance to antibiotics is a serious public health problem that needs new antibacterial compounds for control. Fungi, including resupinated fungi, are a potential source to discover new bioactive compounds efficient again to bacteria resistant to antibiotics. The inhibitory capacity against the bacterial species was statistically evaluated. All the species (basidiomata and strains) were molecularly characterized with the ITS1-5.8S-ITS2 barcoding marker. The strains Ceraceomyces sp., Fuscoporia sp., Gloeocystidiellum sp., Oliveonia sp., Phanerochaete sp., and Xenasmatella sp. correspond to resupinate Basidiomycetes, and only the strain Hypocrea sp. is an Ascomycete, suggesting contamination to the basidiome of Tulasnella sp. According to the antagonistic test, only the Gloeocystidiellum sp. strain had antibacterial activity against the bacterial species Escherichia coli of clinical interest. Statistically, Gloeocystidiellum sp. was significantly (<0.001) active against two E. coli pathotypes (O157:H7 and ATCC 25922). Contrarily, the antibacterial activity of fungi against other pathotypes of E. coli and other strains such as Serratia sp. was not significant. The antibacterial activity between 48 and 72 h increased according to the measurement of the inhibition halos. Because of this antibacterial activity, Gloeocystidiellum sp. was taxonomically studied in deep combined morphological and molecular characterization (ITS1-5.8S-ITS2; partial LSU D1/D2 of nrDNA). A new species Gloeocystidiellum lojanense, a resupinate and corticioid fungus from a tropical montane rainforest of southern Ecuador, with antibacterial potential against E. coli, is proposed to the science.
Journal Article
Gram-Negative Bacteria from Organic and Conventional Agriculture in the Hydrographic Basin of Loja: Quality or Pathogen Reservoir?
by
Cruz, Darío
,
Fernández, Heriberto
,
Cisneros, Rodrigo
in
Agar
,
Agricultural land
,
Agricultural production
2021
Organic and conventional agriculture are vital for the development of human society; however, the use of contaminated water and the inappropriate use of organic chemical fertilizers can lead to an increase in the microbial load (potentially pathogenic) of the normal microbiota of the agricultural soil. In this context, the aim of our study was to isolate Gram-negative bacteria from the superficial soil layer and irrigation water of agricultural areas (11 organic farms and nine conventional farms) and consider their potential ecological and health risk importance. Through culture isolation using three bacterial media (TSA) trypticase soy agar (general nutritive media); MacConkey Gram-negative bacteria and (EMB) eosin methylene blue agar (selective for Enterobacteriaceae) and classical biochemical tests, we recorded a total of 12 bacterial species, most belonging to the Enterobacteriaceae family, such as Enterobacter, Escherichia, Klebsiella, Salmonella and Shigella, which can be pathogenic for humans and animals. In contrast, bacteria such as Pantoea agglomerans, Pseudomonas aeruginosa, P. fluorescens and Burkholderia mallei could facultatively work as diazotrophic or plant growth-promoting rhizobacteria. Soil bacteria richness detected with the media applied was significantly higher than water bacteria, but we found no significant differences between organic and conventional agriculture. We conclude that the isolated bacteria in water and soil mostly belongs to enteropathogenic bacteria which could be pathogenic to animals and humans. While other bacteria like Pseudomonas aeruginosa could be viewed as useful by improving nutrient availability in agricultural soil.
Journal Article
Compensatory Base Changes in ITS2 Secondary Structure Alignment, Modelling, and Molecular Phylogeny: An Integrated Approach to Improve Species Delimitation in Tulasnella (Basidiomycota)
by
Cruz, Darío
,
Suárez, Juan Pablo
,
Jiménez-Gaona, Yuliana
in
alignment-based
,
alignment-free
,
compensatory base changes
2023
Background: The delimitation of species of Tulasnella has been extensively studied, mainly at the morphological (sexual and asexual states) and molecular levels—showing ambiguity between them. An integrative species concept that includes characteristics such as molecular, ecology, morphology, and other information is crucial for species delimitation in complex groups such as Tulasnella. Objectives: The aim of this study is to test evolutionary relationships using a combination of alignment-based and alignment-free distance matrices as an alternative molecular tool to traditional methods, and to consider the secondary structures and CBCs from ITS2 (internal transcribed spacer) sequences for species delimitation in Tulasnella. Methodology: Three phylogenetic approaches were plotted: (i) alignment-based, (ii) alignment-free, and (iii) a combination of both distance matrices using the DISTATIS and pvclust libraries from an R package. Finally, the secondary structure consensus was modeled by Mfold, and a CBC analysis was obtained to complement the species delimitation using 4Sale. Results and Conclusions: The phylogenetic tree results showed delimited monophyletic clades in Tulasnella spp., where all 142 Tulasnella sequences were divided into two main clades A and B and assigned to seven species (T. asymmetrica, T. andina, T. eichleriana ECU6, T. eichleriana ECU4 T. pinicola, T. violea), supported by bootstrap values from 72% to 100%. From the 2D secondary structure alignment, three types of consensus models with helices and loops were obtained. Thus, T. albida belongs to type I; T. eichleriana, T. tomaculum, and T. violea belong to type II; and T. asymmetrica, T. andina, T. pinicola, and T. spp. (GER) belong to type III; each type contains four to six domains, with nine CBCs among these that corroborate different species.
Journal Article