Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Cruz, Tiago M. D."
Sort by:
The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana
Background Floral transition initiates reproductive development of plants and occurs in response to environmental and endogenous signals. In Arabidopsis thaliana , this process is accelerated by several environmental cues, including exposure to long days. The photoperiod-dependent promotion of flowering involves the transcriptional induction of FLOWERING LOCUS T ( FT ) in the phloem of the leaf. FT encodes a mobile protein that is transported from the leaves to the shoot apical meristem, where it forms part of a regulatory complex that induces flowering. Whether FT also has biological functions in leaves of wild-type plants remains unclear. Results In order to address this issue, we first studied the leaf transcriptomic changes associated with FT overexpression in the companion cells of the phloem. We found that FT induces the transcription of SWEET10 , which encodes a bidirectional sucrose transporter, specifically in the leaf veins. Moreover, SWEET10 is transcriptionally activated by long photoperiods, and this activation depends on FT and one of its earliest target genes SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 ( SOC1 ). The ectopic expression of SWEET10 causes early flowering and leads to higher levels of transcription of flowering-time related genes in the shoot apex. Conclusions Collectively, our results suggest that the FT-signaling pathway activates the transcription of a sucrose uptake/efflux carrier during floral transition, indicating that it alters the metabolism of flowering plants as well as reprogramming the transcription of floral regulators in the shoot meristem.
Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression
Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses.
The plant-specific SCL30a SR protein regulates ABA-dependent seed traits and salt stress tolerance during germination
SR (serine/arginine-rich) proteins are conserved RNA-binding proteins best known as key regulators of splicing, which have also been implicated in other steps of gene expression. Despite mounting evidence for their role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain elusive. Here we show that the plant-specific SCL30a SR protein negatively regulates abscisic acid (ABA) signaling to control important seed traits and salt stress responses during germination in Arabidopsis. The SCL30a gene is upregulated during seed imbibition and germination, and its loss of function results in smaller seeds displaying enhanced dormancy and elevated expression of ABA-responsive genes as well as of genes repressed during the germination process. Moreover, the knockout mutant is hypersensitive to ABA and high salinity, while transgenic plants overexpressing SCL30a exhibit reduced ABA sensitivity and enhanced tolerance to salt stress during seed germination. An ABA biosynthesis inhibitor rescues the mutant's enhanced sensitivity to stress, and epistatic analyses confirm that this hypersensitivity requires a functional ABA pathway. Finally, seed ABA levels are unchanged by altered SCL30a expression, indicating that the SR protein positively regulates stress tolerance during seed germination by reducing sensitivity to the phytohormone. Our results reveal a new key player in ABA-mediated control of early development and stress response, and underscore the role of plant SR proteins as important regulators of the ABA signaling pathway. Competing Interest Statement The authors have declared no competing interest.
Longitudinal analyses reveal immunological misfiring in severe COVID-19
Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19) 1 – 4 . However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories. A longitudinal analysis of immune responses in patients with moderate or severe COVID-19 identifies a maladapted immune response profile linked to severe disease.
PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-plasma cells. Therefore, the key aspect of the methodology is identifying these cells, which relies on the experts’ attention and experience. In this work, we present a valuable dataset comprising more than 5,000 plasma and non-plasma cells, labeled by experts, along with some patient diagnostics. We also share a Deep Neural Network model, as a benchmark, trained to identify and count plasma and non-plasma cells automatically. The contributions of this work are two-fold: (i) the labeled cells can be used to train new practitioners and support continuing medical education; and (ii) the design of new methods to identify such cells, improving the results presented by our benchmark. We emphasize that our work supports the diagnosis of MM in practical scenarios and paves new ways to advance the state-of-the-art.
Protein methyltransferase 7 deficiency in Leishmania major increases neutrophil associated pathology in murine model
Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L . major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7 . It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L . major . Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of Lmj PRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi . Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology.
Evaluating the ability of an artificial-intelligence cloud-based platform designed to provide information prior to locoregional therapy for breast cancer in improving patient’s satisfaction with therapy: The CINDERELLA trial
Breast cancer therapy improved significantly, allowing for different surgical approaches for the same disease stage, therefore offering patients different aesthetic outcomes with similar locoregional control. The purpose of the CINDERELLA trial is to evaluate an artificial-intelligence (AI) cloud-based platform (CINDERELLA platform) vs the standard approach for patient education prior to therapy. A prospective randomized international multicentre trial comparing two methods for patient education prior to therapy. After institutional ethics approval and a written informed consent, patients planned for locoregional treatment will be randomized to the intervention (CINDERELLA platform) or controls. The patients in the intervention arm will use the newly designed web-application (CINDERELLA platform, CINDERELLA APProach) to access the information related to surgery and/or radiotherapy. Using an AI system, the platform will provide the patient with a picture of her own aesthetic outcome resulting from the surgical procedure she chooses, and an objective evaluation of this aesthetic outcome (e.g., good/fair). The control group will have access to the standard approach. The primary objectives of the trial will be i) to examine the differences between the treatment arms with regards to patients' pre-treatment expectations and the final aesthetic outcomes and ii) in the experimental arm only, the agreement of the pre-treatment AI-evaluation (output) and patient's post-therapy self-evaluation. The project aims to develop an easy-to-use cost-effective AI-powered tool that improves shared decision-making processes. We assume that the CINDERELLA APProach will lead to higher satisfaction, better psychosocial status, and wellbeing of breast cancer patients, and reduce the need for additional surgeries to improve aesthetic outcome.
Consistent Long-Term Therapeutic Efficacy of Human Umbilical Cord Matrix-Derived Mesenchymal Stromal Cells After Myocardial Infarction Despite Individual Differences and Transient Engraftment
Human mesenchymal stem cells gather special interest as a universal and feasible add-on therapy for myocardial infarction (MI). In particular, human umbilical cord matrix-derived mesenchymal stromal cells (UCM-MSC) are advantageous since can be easily obtained and display high expansion potential. Using isolation protocols compliant with cell therapy, we previously showed UCM-MSC preserved cardiac function and attenuated remodeling 2 weeks after MI. In this study, UCM-MSC from two umbilical cords, UC-A and UC-B, were transplanted in a murine MI model to investigate consistency and durability of the therapeutic benefits. Both cellular products improved cardiac function and limited adverse cardiac remodeling 12 weeks post-ischemic injury, supporting sustained and long-term beneficial therapeutic effect. Donor associated variability was found in the modulation of cardiac remodeling and activation of the Akt-mTOR-GSK3β survival pathway. In vitro , the two cell products displayed similar ability to induce the formation of vessel-like structures and comparable transcriptome in normoxia and hypoxia, apart from UCM-MSCs proliferation and expression differences in a small subset of genes associated with MHC Class I. These findings support that UCM-MSC are strong candidates to assist the treatment of MI whilst calling for the discussion on methodologies to characterize and select best performing UCM-MSC before clinical application.
A Smartphone Application Based on Dialectical Behavior Therapy Skills for Binge Eating Episodes: Study Protocol for a Randomized Controlled Trial
Background/Objectives: With the rapid progression of technology, applications have been proposed as a promising alternative to conventional psychotherapeutic treatment. Nonetheless, research on unguided self-help applications for binge eating remains scarce, with most existing studies utilizing cognitive behavioral therapy (CBT) principles. Therefore, this paper presents the protocol for a randomized controlled trial designed to evaluate the efficacy and acceptability of eMOTE, a standalone application designed specifically for women in Portugal who binge eat. eMOTE, adapted from dialectical behavior therapy (DBT), is unique in that it focuses on teaching emotion regulation skills while also integrating core CBT strategies. Methods: At least 68 females who self-report binge eating episodes will be randomized into an intervention group with access to eMOTE for eight weeks or a delayed waitlist, which will have access to eMOTE after the T1 assessment. Assessments will be conducted at baseline (T0), post-intervention (T1), and at 2-month follow-up (T2). The primary outcomes will include objective and subjective binge eating frequency and binge eating symptomatology, while secondary outcomes will assess global levels of ED psychopathology, shape concern, weight concern, eating concern, dietary restraint, compensatory behaviors, mindfulness, emotion regulation difficulties, intuitive eating, psychological distress, and body mass index. Conclusions: This study will contribute to the limited literature on the use of smartphone technology as an alternative to traditional psychotherapy. Furthermore, this standalone application will offer insights into the use of emotion regulation and food monitoring components designed for adult females experiencing binge eating episodes.
Lipocalin 2 modulates the cellular response to amyloid beta
The production, accumulation and aggregation of amyloid beta (A β ) peptides in Alzheimer’s disease (AD) are influenced by different modulators. Among these are iron and iron-related proteins, given their ability to modulate the expression of the amyloid precursor protein and to drive A β aggregation. Herein, we describe that lipocalin 2 (LCN2), a mammalian acute-phase protein involved in iron homeostasis, is highly produced in response to A β 1-42 by choroid plexus epithelial cells and astrocytes, but not by microglia or neurons. Although A β 1-42 stimulation decreases the dehydrogenase activity and survival of wild-type astrocytes, astrocytes lacking the expression of Lcn2 are not affected. This protection results from a lower expression of the proapoptotic gene Bim and a decreased inflammatory response. Altogether, these findings show that A β toxicity to astrocytes requires LCN2, which represents a novel mechanism to target when addressing AD.