Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Cruz-Neto, Ariovaldo P."
Sort by:
Hematological parameters vary with life history stage in the pale‐breasted thrush Turdus leucomelas
The avian life cycle is composed by a progressive sequence of life history stages (LHS). Changes in energy expenditure and exposure to stressors at different LHS require corresponding changes in behavior, physiology, and morphology. Variation in hematological parameters, such hematocrit (Hct), hemoglobin (Hb), and heterophil to lymphocyte ratio (H/L ratio), can have permissive, stimulatory, and preparative actions to help maintain homeostasis through different LHS. Few studies have examined differences in these parameters among different LHS in free‐living birds, with most of them restricted to temperate zones. We collected blood samples and measured hematological parameters every week for over a year from a population of a common resident bird species in southeastern Brazil, the pale‐breasted thrush Turdus leucomelas. Hematocrit and hemoglobin concentration were highest during the onset of the reproduction and lowest during molt. Furthermore, H/L ratios were higher at the end of the reproduction, indicating that the breeding season could be the most stressful period of the year for this population of thrushes. There was no difference between sexes for any hematological parameter at any LHS. These results show that there is a permissive physiological effect for Hct and Hb to facilitate LHS transitions and that reproduction could be the most stressful event for this species. Lastly, these results mirror those from temperate species despite distinct environmental differences between these regions.
Combined effects of ambient temperature and food availability on induced innate immune response of a fruit-eating bat (Carollia perspicillata)
Resilience of mammals to anthropogenic climate and land-use changes is associated with the maintenance of adequate responses of several fitness-related traits such as those related to immune functions. Isolated and combined effects of decreased food availability and increased ambient temperature can lead to immunosuppression and greater susceptibility to disease. Our study tested the general hypothesis that decreased food availability, increased ambient temperature and the combined effect of both factors would affect selected physiological and behavioral components associated with the innate immune system of fruit-eating bats ( Carollia perspicillata ). Physiological (fever, leukocytosis and neutrophil/lymphocyte ratio) and behavioral (food intake) components of the acute phase response, as well as bacterial killing ability of the plasma were assessed after immune challenge with lipopolysaccharide (LPS: 10 mg/kg) in experimental groups kept at different short-term conditions of food availability (ad libitum diet or 50% food-deprived) and ambient temperature (27 and 33°C). Our results indicate that magnitude of increase in body temperature was not affected by food availability, ambient temperature or the interaction of both factors, but the time to reach the highest increase took longer in LPS-injected bats that were kept under food restriction. The magnitude of increased neutrophil/lymphocyte ratio was affected by the interaction between food availability and ambient temperature, but food intake, total white blood cell count and bacterial killing ability were not affected by any factor or interaction. Overall, our results suggest that bacterial killing ability and most components of acute phase response examined are not affected by short-term changes in food availability and ambient temperature within the range evaluated in this study, and that the increase of the neutrophil/lymphocyte ratio when bats are exposed to low food availability and high ambient temperature might represent an enhancement of cellular response to deal with infection.
Highly Diverse Arenaviruses in Neotropical Bats, Brazil
We detected arenavirus RNA in 1.6% of 1,047 bats in Brazil that were sampled during 2007-2011. We identified Tacaribe virus in 2 Artibeus sp. bats and a new arenavirus species in Carollia perspicillata bats that we named Tietê mammarenavirus. Our results suggest that bats are an underrecognized arenavirus reservoir.
Geographic Variation in Daily Temporal Activity Patterns of a Neotropical Marsupial (Gracilinanus agilis)
The temporal activity of animals is an outcome of both biotic and abiotic factors, which may vary along the geographic range of the species. Therefore, studies conducted with a species in different localities with distinct features could elucidate how animals deal with such factors. In this study, we used live traps equipped with timing devices to investigate the temporal activity patterns of the didelphid Gracilinanus agilis in two dry-woodland areas of the Brazilian savanna (Cerrado). These areas were located about 660 km apart, one in Central Brazil and the other in Southeastern Brazil. We compared such patterns considering both reproductive and non-reproductive periods, and how it varies as a function of temperature on a seasonal basis. In Central Brazil, we found a constant, and temperature-independent activity during the night in both reproductive and non-reproductive periods. On the other hand, in Southeastern Brazil, we detected a constant activity during the reproductive period, but in the non-reproductive period G. agilis presented a peak of activity between two and four hours after sunset. Moreover, in this latter we found a relation between temporal activity and temperature during the autumn and spring. These differences in temporal activity between areas, observed during the non-reproductive period, might be associated with the higher seasonal variability in temperature, and lower mean temperatures in the Southeastern site in comparison to the Central one. In Southeastern Brazil, the decrease in temperature during the non-reproductive season possibly forced G. agilis to be active only at certain hours of the night. However, likely due to the reproductive activities (intensive foraging and searching for mates) this marsupial showed constant, temperature-independent activity during the night in the reproductive period at both sites.
Trophic niche changes associated with habitat fragmentation in a Neotropical bat species
Habitat fragmentation could alter ecological traits including species trophic habits. Here, we used carbon and nitrogen stable isotope ratios to establish differences in isotopic niche width and food resource use between forest fragments and the continuous forest for the phyllostomid frugivorous bat Artibeus lituratus. Using mist nests, we captured bats from two forest fragments and two sites in continuous forest, and sampled from each individual captured three body tissues with contrasting turnover rates (skin, muscle, and liver). Samples were collected between February and March (austral summer) and between August and September (austral winter). In addition, in each sampling site and season we collected potential food resources (fruits and insects) consumed by our A. lituratus. Our findings indicate that A. lituratus had a predominantly omnivorous diet, with high consumption of insects during summer in forest fragments. The increasing consumption of insects in these fragments seems to have led to a wider isotopic niche, in relation to the continuous forest. Because A. lituratus is typically a seed disperser, changes in trophic habits in the forest fragments from frugivory to insectivory may diminish their role in forest regeneration.
The energetic cost of mounting an immune response for Pallas’s long-tongued bat ( Glossophaga soricina )
The acute phase response (APR) is the first line of defense of the vertebrate immune system against pathogens. Mounting an immune response is believed to be energetically costly but direct measures of metabolic rate during immune challenges contradict this assumption. The energetic cost of APR for birds is higher than for rodents, suggesting that this response is less expensive for mammals. However, the particularly large increase in metabolic rate after APR activation for a piscivorous bat ( Myotis vivesi ) suggests that immune response might be unusually costly for bats. Here we quantified the energetic cost and body mass change associated with APR for the nectarivorous Pallas’s long-tongued bat ( Glossophaga soricina ). Activation of the APR resulted in a short-term decrease in body mass and an increase in resting metabolic rate (RMR) with a total energy cost of only 2% of the total energy expenditure estimated for G. soricina . This increase in RMR was far from the large increase measured for piscivorous bats; rather, it was similar to the highest values reported for birds. Overall, our results suggest that the costs of APR for bats may vary interspecifically. Measurement of the energy cost of vertebrate immune response is limited to a few species and further work is warranted to evaluate its significance for an animal’s energy budget.
Paracellular Absorption: A Bat Breaks the Mammal Paradigm
Bats tend to have less intestinal tissue than comparably sized nonflying mammals. The corresponding reduction in intestinal volume and hence mass of digesta carried is advantageous because the costs of flight increase with load carried and because take-off and maneuverability are diminished at heavier masses. Water soluble compounds, such as glucose and amino acids, are absorbed in the small intestine mainly via two pathways, the transporter-mediated transcellular and the passive, paracellular pathways. Using the microchiropteran bat Artibeus literatus (mean mass 80.6+/-3.7 g), we tested the predictions that absorption of water-soluble compounds that are not actively transported would be extensive as a compensatory mechanism for relatively less intestinal tissue, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitoneally the metabolically inert carbohydrates L-rhamnose (molecular mass = 164 Da) and cellobiose (molecular mass = 342 Da) which are absorbed only by paracellular transport, and 3-O-methyl-D-glucose (3OMD-glucose) which is absorbed via both mediated (active) and paracellular transport. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 90+/-11%; cellobiose, 10+/-3%, n = 8) and was significantly higher in bats than has been reported for laboratory rats and other mammals. In addition, absorption of 3OMD-glucose was high (96+/-11%). We estimated that the bats rely on passive, paracellular absorption for more than 70% of their total glucose absorption, much more than in non-flying mammals. Although possibly compensating for less intestinal tissue, a high intestinal permeability that permits passive absorption might be less selective than a carrier-mediated system for nutrient absorption and might permit toxins to be absorbed from plant and animal material in the intestinal lumen.
The Relationship between Diet Quality and Basal Metabolic Rate in Endotherms: Insights from Intraspecific Analysis
In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The “food‐habit hypothesis” stands as one of the most striking and often‐mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within‐species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food‐habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy‐saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.
Physical constraints on thermoregulation and flight drive morphological evolution in bats
Body size and shape fundamentally determine organismal energy requirements by modulating heat and mass exchange with the environment and the costs of locomotion, thermoregulation, and maintenance. Ecologists have long used the physical linkage between morphology and energy balance to explain why the body size and shape of many organisms vary across climatic gradients, e.g., why larger endotherms are more common in colder regions. However, few modeling exercises have aimed at investigating this link from first principles. Body size evolution in bats contrasts with the patterns observed in other endotherms, probably because physical constraints on flight limit morphological adaptations. Here, we develop a biophysical model based on heat transfer and aerodynamic principles to investigate energy constraints on morphological evolution in bats. Our biophysical model predicts that the energy costs of thermoregulation and flight, respectively, impose upper and lower limits on the relationship of wing surface area to body mass (S-MR), giving rise to an optimal S-MR at which both energy costs are minimized. A comparative analysis of 278 species of bats supports the model’s prediction that S-MR evolves toward an optimal shape and that the strength of selection is higher among species experiencing greater energy demands for thermoregulation in cold climates. Our study suggests that energy costs modulate the mode of morphological evolution in bats—hence shedding light on a long-standing debate over bats’ conformity to ecogeographical patterns observed in other mammals—and offers a procedure for investigating complex macroecological patterns from first principles.
Intraspecific Variability in the Basal Metabolic Rate: Testing the Food Habits Hypothesis
Several competing hypotheses attempt to explain how environmental conditions affect mass‐independent basal metabolic rate (BMR) in mammals. One of the most inclusive and yet debatable hypotheses is the one that associates BMR with food habits, including habitat productivity. These effects have been widely investigated at the interspecific level under the assumption that for any given species all traits are fixed. Consequently, the variation among individuals is largely ignored. Intraspecific analysis of physiological traits has the potential to compensate for many of the pitfalls associated with interspecific analyses and, thus, to be a useful approach for evaluating hypotheses regarding metabolic adaptation. In this study, we investigated the effects of food quality, availability, and predictability on the BMR of the leaf‐eared mousePhyllotis darwini. BMR was measured on freshly caught animals from the field, since they experience natural seasonal variations in environmental factors (and, hence, variations in habitat productivity) and diet quality. BMR was significantly correlated with the proportion of dietary plants and seeds. In addition, BMR was significantly correlated with monthly habitat productivity. Path analysis indicated that, in our study, habitat productivity was responsible for the observed changes in BMR, while diet per se had no effect on this variable.