Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Cucoș, Alexandra"
Sort by:
Determining the Geogenic Radon Potential in Different Layouts and Numbers of Points
The geogenic radon potential is primarily controlled by the geological characteristics of the site, such as the rock type and structural elements, as well as the permeability of the soil. Depending on the scope of the survey, the geogenic radon potential can be mapped based on measurements conducted in the field at various resolutions. Detailed surveys are generally labour-intensive and time-consuming. Therefore, a balance should be reached between the desired level of precision and the required amount of effort, delivering the best results with the least number of resources. The international literature describes a variety of surveying techniques. This study was undertaken in a region of the central zone of the Poiana Rusca Mountains (Southern Carpathians, Romania) that contains several metamorphic, volcanic, and sedimentary rock types. The primary objective of the study is to compare alternative sampling point configurations, which vary in number and arrangement. The objective was to achieve the most accurate representation of the calculated geogenic radon potential while limiting the number of measurements and the time and effort associated with them. Radon activity concentration and soil permeability data were collected from 34 locations using seven alternative layouts of the sampling points. The proposed layouts were based on various configurations of fifteen, nine, five, and three sampling points. Locally, in some of the metamorphic units and in the regions containing sedimentary deposits with volcanic intercalations, the geogenic radon potential was found to be elevated. The results indicate that the three-measuring-point configuration is acceptable for general geogenic radon potential surveys.
First Steps towards a National Approach for Radon Survey in Romanian Schools
Schools are a category of public buildings with a high radon exposure risk, due to their high occupancy factor. In Romania, the elaboration of a methodology for radon measurements in schools is a necessity imposed both by the European legislation and by the relatively high percentage (about 10%) of the mapped territory with a potential increased risk of exposure to the action of ionizing radiation emitted by radon. In order to optimize the design of a national survey aimed to evaluate radon exposure of children in Romanian schools, we conducted a pilot study in two schools in Cluj-Napoca, following the screening measurements carried out in 109 schools and kindergartens from five counties. The specific steps that must be followed were described, taking into account the international protocols and particularities of Romanian territory. The proposed approach could act as a guide for other large buildings and is implicit for the implementation of National Radon Action Plan, approved by HG no. 526/12 July 2018 in accordance with Council Directive 2013/59/EURATOM. The obtained results indicate that a high probability of annual radon concentration above the national reference level is to be expected in schools.
Radon concentration in three Florida caves: Florida, Jennings, and Ocala
This study reports the first radon concentration measurements within three frequently visited caves in Florida: one touristic (Florida Caverns), one private (Ocala Caverns), and one private, but publicly accessible (Jennings Cave). To measure the radon concentration, 18 CR-39 solid-state alpha track detectors were placed along the main passages of these caves for a period of 2 months (between December 2016 and February 2017). The results show that the radon concentration throughout all caves greatly exceeds the recommended safety action level. The highest concentrations of 2737 and 2958 Bq m −3 were recorded in Ocala and Jennings caves, respectively; whereas in Florida Caverns, the concentration reached a value as high as 1050 Bq m −3 . To aid in ventilation, allowing the built-up gas to disperse, it is suggested that at Florida Caverns, the entry doors to be periodically opened for several hours. In locations with high concentrations where additional ventilation is not possible, such as Ocala and Jennings, it is recommended that the exposure time to be limited. Although radon values measured in the surveyed caves are high, the occasional cave visits are generally safe as the overall exposure time is minimal. However, cave guides and workers may have an increased risk as they spend many hours a day during which they are exposed to these high radon concentrations.
The Geogenic Radon Potential in the Eastern Part of the Poiana Ruscă Mountains (Southern Carpathians, Romania)
Detailed soil radon measurements were conducted in the eastern Poiana Ruscă Mountains, motivated by the area’s complex geology, varied topography, and previously reported high indoor radon levels that pose a health risk to local residents. A total of 110 locations were investigated by conducting 330 measurements over a 480 km2 area, using the Radon Monitor-2 (RM-2) and Radon-Jok devices, for assessing the radon activity concentration in soil and soil permeability in correlation with local geological formations. The Neznal method was used to derive the GRP, which was categorized into low (<10), medium (10–35), and high (≥35) risk categories. The arithmetic mean radon concentration was 37.5 kBq/m3, with values ranging from 5.1 to 163 kBq/m3. Soil permeability ranged widely across geological formations, from 6.9 × 10−14 to 2.7 × 10−11 m2. The highest radon concentrations and geogenic radon potential (GRP) values were associated with micaceous schists interlayered with amphibolites and sericitic quartzite schists. The results, comparable to those from previous studies, indicate a medium to high geogenic radon potential in the eastern Poiana Ruscă Mountains, which exposes the inhabitants of Lunca Cernii de Sus and, to a lesser extent, those of Lunca Cernii de Jos to an increased radon risk.
Monitoring and risk assessment for groundwater sources in rural communities of Romania (GROUNDWATERISK)
In the past 100 years, a decreasing rainfall trend has been recorded on Romanian territory, a trend that continues today. Therefore, realistic estimation of the groundwater resources is crucial, especially for the rural communities lacking the economic power to use alternative sources of drinking water. The groundwater sources used by rural communities in Romania generally originate directly from caves, wells or springs with no proper evaluation of the water quality. Groundwater is exposed to different pollutants, as bats' guano in caves, fertilizers in agricultural areas or livestock (cattle, sheep, goats, etc.) farms on the surface. On the other hand, the water extracted directly from inside the caves is affecting groundwater ecosystems, highly vulnerable to any human impact and neglected by European legislation so far. The project aims to monitor, during two consecutive years, groundwater sources with different degrees of above- and underground pollution, from different regions of Romania. To achieve the goals of the project, a multidisciplinary monitoring strategy that will include measurements of hydrological, physico-chemical and biological (microbiology and aquatic invertebrates’ assessment) parameters alongside the quantification of radon and stable isotopes, rainfall or possible inflows of water. The specific outcomes of this project are: i) to test, develop and validate a new, more rapid and efficient method for monitoring and risk assessment of groundwater sources – and not only – by using molecular techniques, and propose this method to the water agencies in Romania; ii) to propose for Romanian authorities to implement a harmonized coherent methodology to measure radon concentration in water, as a consequence of EURATOM Directive; and iii) to educate local communities that are using groundwater as source for drinking water and raise young people’s awareness on the benefits of ecosystem services provided by the groundwater.
Editorial for the Special Issue “Atmospheric Radon Measurements, Control, Mitigation and Management”
The Special Issue of the open-access journal Atmosphere addresses the issue of “Atmospheric Radon Measurements, Control, Mitigation and Management”, based on the global need for better management of radon and indoor air pollutants inside buildings, based on reliable research experience [...]
Factors Influencing Radon Variability and Measurement Protocol Optimization in Romanian Educational Buildings Using Integrated and Continuous Measurements
Due to the higher susceptibility of children to ionizing radiation, it is imperative to evaluate the radon activity concentration (RAC) in educational buildings, conduct additional investigations to identify radon entry routes, and implement remedial measures to minimize exposure to this radioactive gas. In Romania, educational buildings are a category of public buildings where it is mandatory to perform RAC measurements. The present study examines data obtained from 41 Romanian educational buildings, where initial and additional radon investigations were performed. The first objective was to identify the factors influencing the variability of the RAC inside the buildings. The second objective was to emphasize the importance of short-term (a few days), continuous measurements in identifying buildings with RAC exceeding the reference level. High RAC values were associated with the classrooms located on the ground floor of the building compared to the administrative ones. The multiple linear regression led to a coefficient of determination of 0.11, the relative humidity and the amount of precipitation being the main variables with a significant impact, kept in the model, the lack of a significant association between the indoor RAC and the radon potential in the soil being obtained. Comparison of the radon long-term integrated measurements with continuous, short-term, led to the suggestion of three different scenarios for the measurement work protocol. By following the suggested modifications, it is possible to accelerate the procedure in situations where the time needed to plan renovations and radon remedial measures is shorter than the time needed to conduct integrated measurements.
Radon Concentration Assessment in Urban Romanian Buildings: A Multistory Analysis
Radon (Rn 222) is a significant contributor to natural radiation exposure in residential environments such as single-family houses and multistory buildings. This study monitored radon activity concentration (RAC) in 455 apartments in 30 multistory buildings in Buzău, Romania. Integrated measurements of the RAC using CR-39 nuclear track detectors were conducted for a period of 3 to 4 months. The results revealed that the RAC varies between buildings, with an annual average between 33 and 77 Bq/m3. This variation may be attributed to poor ventilation and the chimney effect in common ventilation ducts, which may facilitate radon displacement vertically. Also, apartments with low occupancy or inadequate ventilation showed higher radon levels of up to 285 Bq/m3. The study highlights the potential risk of increased radon exposure in energy-efficient buildings due to poor ventilation, emphasizing the need for special attention to radon mitigation measures in building design. The results emphasize that the RAC is influenced by building characteristics, room use, and ventilation, with significant implications for health risks in urban residential environments.
Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania
Seasonal variations of the radon and radium activity concentrations in karstic water sources originating in karstic formations were investigated as part of a premiere systematic survey conducted in Romania. A database including a total of 228 drinking water samples collected from 30 distinct water sources adjacent to rural communities was compiled. The radon and radium activity concentrations for all seasons, assessed based on solid scintillation, ranged from 2.1 to 19.7 Bq/L and from 0.6 to 3.0 Bq/L, respectively. Overall, the detected radon and radium contents did not exceed the radioprotection standards recommended by national and European legislation. However, in at least one season, the measured values for 31% of the samples exceeded the 11.1 Bq/L maximum contaminant level for radon in drinking water recommended by the Environmental Protection Agency of the United States. The associated radiological risk, reported in terms of annual effective dose, was calculated to be between 9.8 × 10−6 and 6.0 × 10−5 mSv/y for radon and between 5.9 × 10−5 and 2.7 × 10−4 mSv/y for radium, which are considerably below the WHO (World Health Organization) guidelines at a value of 0.1 mSv/y.
The path from geology to indoor radon
It is generally accepted that radon emission is strongly influenced by the geological characteristics of the bedrock. However, transport in-soil and entry paths indoors are defined by other factors such as permeability, building and architectural features, ventilation, occupation patterns, etc. The purpose of this paper is to analyze the contribution of each parameter, from natural to man-made, on the radon accumulation indoors and to assess potential patterns, based on 100 case studies in Romania. The study pointed out that the geological foundation can provide a reasonable explanation for the majority of the values recorded in both soil and indoor air. Results also showed that older houses, built with earth-based materials, are highly permeable to soil radon. Energy-efficient houses, on the other hand, have a tendency to disregard the radon potential of the geological foundation, causing a higher predisposition to radon accumulation indoors and decreasing the general indoor air quality.