Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Cui Wang Jian-liang Zhang Guang-wei Wang Ke-xin Jiao Zheng-jian Liu Kuo-chih Chou"
Sort by:
Combustion characteristics and kinetics of anthracite with added chlorine
The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.
Combustion characteristics and kinetics of anthracite with added chlorine
The combustion process of Yangquan anthracite(YQ) with the addition of 0.045wt%, 0.211wt%, 1.026wt%, and 2.982wt% chlorine was investigated using a thermogravimetric method from an ambient temperature to 1173 K in an air atmosphere. Results show that the YQ combustion characteristics are not significantly affected by an increase in chlorine content. Data acquired for combustion conversion are then further processed for kinetic analysis. Average apparent activation energies determined using the model-free method(specifically the KAS method) are 103.025, 110.250, 99.906, and 110.641 k J/mol, respectively, and the optimal kinetic model for describing the combustion process of chlorine-containing YQ is the nucleation kinetic model, as determined by the z(α) master plot method. The mechanism function of the nucleation kinetic model is then employed to estimate the pre-exponential factor, by making use of the compensation effect. The kinetic models to describe chlorine-containing YQ combustion are thus obtained through advanced determination of the optimal mechanism function, average apparent activation energy, and the pre-exponential factor.