Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
49
result(s) for
"Cullinane, Carleen"
Sort by:
CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer
2020
Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.
Acquired resistance limits the efficacy of PARP inhibitors (PARPi) in high grade serous ovarian cancer (HGSOC). Here, the authors show that inhibition of RNA polymerase I transcription using CX-5461 increases the therapeutic efficacy of PARPi and overcomes PARPi resistance in PDX models of HGSOC.
Journal Article
Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP
2020
Peptide receptor radionuclide therapy (PRRT) is an important treatment option for patients with somatostatin receptor-2 (SSTR2)-expressing neuroendocrine tumour (NET) though tumour regression occurs in only a minority of patients. Therefore, novel PRRT regimens with improved therapeutic activity are needed. Radiation induced DNA damage repair is an attractive therapeutic target to increase PRRT efficacy and consequently, we have characterised a panel of preclinical models for their SSTR2 expression,
in vivo
growth properties and response to
177
Lu-DOTA-octreotate (LuTate) PRRT to identify models with features suitable for evaluating novel therapeutic combinations
. In vitro
studies using the SSTR2 expressing AR42J model demonstrate that the combination of LuTate and the small molecule Poly(ADP-ribose) polymerase-1 (PARP) inhibitor, talazoparib led to increased DNA double strand breaks, as assessed by γ-H2AX foci formation, as compared to LuTate alone. Furthermore, using the AR42J tumour model
in vivo
we demonstrate that the combination of LuTate and talazoparib significantly improved the anti-tumour efficacy of LuTate alone. These findings support the clinical evaluation of the combination of LuTate and PARP inhibition in SSTR2-expressing NET.
Journal Article
Inhibiting the system xC−/glutathione axis selectively targets cancers with mutant-p53 accumulation
by
Liu, David S.
,
Pearson, Helen B.
,
Abrahmsen, Lars
in
631/154/53/2423
,
631/67/1059/602
,
631/67/1504/1477
2017
TP53
, a critical tumour suppressor gene, is mutated in over half of all cancers resulting in mutant-p53 protein accumulation and poor patient survival. Therapeutic strategies to target mutant-p53 cancers are urgently needed. We show that accumulated mutant-p53 protein suppresses the expression of
SLC7A11
, a component of the cystine/glutamate antiporter, system x
C
−
, through binding to the master antioxidant transcription factor NRF2. This diminishes glutathione synthesis, rendering mutant-p53 tumours susceptible to oxidative damage. System x
C
−
inhibitors specifically exploit this vulnerability to preferentially kill cancer cells with stabilized mutant-p53 protein. Moreover, we demonstrate that
SLC7A11
expression is a novel and robust predictive biomarker for APR-246, a first-in-class mutant-p53 reactivator that also binds and depletes glutathione in tumours, triggering lipid peroxidative cell death. Importantly, system x
C
−
antagonism strongly synergizes with APR-246 to induce apoptosis in mutant-p53 tumours. We propose a new paradigm for targeting cancers that accumulate mutant-p53 protein by inhibiting the SLC7A11–glutathione axis.
Efficient therapeutic strategies to target mutant-p53 cancers are needed. Here, the authors demonstrate the molecular mechanism through which mutant-p53 tumours are susceptible to oxidative damage and propose a potential strategy for targeting such cancers by inhibiting the SLC7A11-glutathione axis.
Journal Article
Adaptive translational reprogramming of metabolism limits the response to targeted therapy in BRAFV600 melanoma
2022
Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.
Different adaptive mechanisms have been reported to reduce the efficacy of mutant BRAF inhibition in melanoma. Here, the authors show BRAF inhibition induces the translational regulation of metabolic genes leading to acquired therapy resistance.
Journal Article
Regulation of PRMT5–MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma
by
Falk, Hendrik
,
Ardley, Kerry
,
Kleinschmidt, Margarete
in
Arginine
,
Biological Sciences
,
Breast cancer
2019
Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5–MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5–MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.
Journal Article
The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer
by
Yan, Shunfei
,
Hannan, Ross D.
,
Pearson, Richard B.
in
631/67/1517/1709
,
692/4028/67/1059/602
,
Animals
2021
Background
Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC.
Methods
Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC.
Results
We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo.
Conclusions
Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.
Journal Article
The Epigenetic Regulator I-BET151 Induces BIM-Dependent Apoptosis and Cell Cycle Arrest of Human Melanoma Cells
by
Gowrishankar, Kavitha
,
Gallagher, Stuart J.
,
Gunatilake, Dilini
in
Animals
,
Apoptosis
,
Apoptosis Regulatory Proteins - metabolism
2014
Epigenetic changes are widespread in melanoma and contribute to the pathogenic biology of this disease. In the present study, we show that I-BET151, which belongs to a new class of drugs that target the BET family of epigenetic “reader” proteins, inhibits melanoma growth in vivo and induced variable degrees of apoptosis in a panel of melanoma cells. Apoptosis was caspase dependent and associated with G1 cell cycle arrest. All melanoma cells tested had increased levels of the BH3 proapoptotic protein BIM, which appeared to be regulated by the BRD2 BET protein and to some extent by BRD3. In contrast, knockdown experiments indicated that inhibition of BRD4 was associated with decreased levels of BIM. Apoptosis was dependent on BIM in some but not all cell lines, indicating that other factors were determinants of apoptosis, such as downregulation of antiapoptotic proteins revealed in gene expression arrays. G1 cell cycle arrest appeared to be mediated by p21 and resulted from inhibition of the BRD4 protein. The activity of BET protein inhibitors appears independent of the BRAF and NRAS mutational status of melanoma, and further studies to assess their therapeutic role in melanoma are warranted.
Journal Article
A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy
2019
Both targeted therapy and immunotherapy have been used successfully to treat melanoma, but the development of resistance and poor response rates to the individual therapies has limited their success. Designing rational combinations of targeted therapy and immunotherapy may overcome these obstacles, but requires assessment in preclinical models with the capacity to respond to both therapeutic classes. Herein, we describe the development and characterization of a novel, immunogenic variant of the
Braf
V600E
Cdkn2a
−/−
Pten
−/−
YUMM1.1 tumor model that expresses the immunogen, ovalbumin (YOVAL1.1). We demonstrate that, unlike parental tumors, YOVAL1.1 tumors are immunogenic
in vivo
and can be controlled by immunotherapy. Importantly, YOVAL1.1 tumors are sensitive to targeted inhibitors of BRAF
V600E
and MEK, responding in a manner consistent with human BRAF
V600E
melanoma. The YOVAL1.1 melanoma model is transplantable, immunogenic and sensitive to clinical therapies, making it a valuable platform to guide strategic development of combined targeted therapy and immunotherapy approaches in BRAF
V600E
melanoma.
Journal Article
Synthesis of 18FF-γ-T-3, a Redox-Silent γ-Tocotrienol (γ-T-3) Vitamin E Analogue for Image-Based In Vivo Studies of Vitamin E Biodistribution and Dynamics
by
Roselt, Peter
,
Noonan, Wayne
,
Wiebe, Leonard I.
in
Animals
,
Antioxidants
,
Antioxidants - chemistry
2020
Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E’s biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.
Journal Article
Pharmacogenomics and functional imaging to predict irinotecan pharmacokinetics and pharmacodynamics: the predict IR study
by
Hicks, Rod J
,
Sue-Anne, McLachlan
,
Cullinane Carleen
in
Aldehyde dehydrogenase
,
Clinical trials
,
Copy number
2021
PurposeIrinotecan (IR) displays significant PK/PD variability. This study evaluated functional hepatic imaging (HNI) and extensive pharmacogenomics (PGs) to explore associations with IR PK and PD (toxicity and response).MethodsEligible patients (pts) suitable for Irinotecan-based therapy. At baseline: (i) PGs: blood analyzed by the Affymetrix-DMET™-Plus-Array (1936 variants: 1931 single nucleotide polymorphisms [SNPs] and 5 copy number variants in 225 genes, including 47 phase I, 80 phase II enzymes, and membrane transporters) and Sanger sequencing (variants in HNF1A, Topo-1, XRCC1, PARP1, TDP, CDC45L, NKFB1, and MTHFR), (ii) HNI: pts given IV 250 MBq-99mTc-IDA, data derived for hepatic extraction/excretion parameters (CLHNI, T1/2-HNI, 1hRET, HEF, Td1/2). In cycle 1, blood was taken for IR analysis and PK parameters were derived by non-compartmental methods. Associations were evaluated between HNI and PGs, with IR PK, toxicity, objective response rate (ORR) and progression-free survival (PFS).ResultsN = 31 pts. The two most significant associations between PK and PD with gene variants or HNI parameters (P < 0.05) included: (1) PK: SN38-Metabolic Ratio with CLHNI, 1hRET, (2) Grade 3+ diarrhea with SLC22A2 (rs 316019), GSTM5 (rs 1296954), (3) Grade 3+ neutropenia with CLHNI, 1hRET, SLC22A2 (rs 316019), CYP4F2 (rs2074900) (4) ORR with ALDH2 (rs 886205), MTHFR (rs 1801133). (5) PFS with T1/2-HNI, XDH (rs 207440), and ABCB11 (rs 4148777).ConclusionsExploratory associations were observed between Irinotecan PK/PD with hepatic functional imaging and extensive pharmacogenomics. Further work is required to confirm and validate these findings in a larger cohort of patients.Australian New Zealand Clinical Trials Registry (ANZCTR) NumberACTRN12610000897066, Date registered: 21/10/2010.
Journal Article