Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
68 result(s) for "Cuoco, Michael S"
Sort by:
Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor–directed therapies
Seventy percent of breast cancers express the estrogen receptor (ER), and agents that target the ER are the mainstay of treatment. However, virtually all people with ER + breast cancer develop resistance to ER-directed agents in the metastatic setting. Beyond mutations in the ER itself, which occur in 25–30% of people treated with aromatase inhibitors 1 – 4 , knowledge about clinical resistance mechanisms remains incomplete. We identified activating HER2 mutations in metastatic biopsies from eight patients with ER + metastatic breast cancer who had developed resistance to aromatase inhibitors, tamoxifen or fulvestrant. Examination of treatment-naive primary tumors in five patients showed no evidence of pre-existing mutations in four of five patients, suggesting that these mutations were acquired under the selective pressure of ER-directed therapy. The HER2 mutations and ER mutations were mutually exclusive, suggesting a distinct mechanism of acquired resistance to ER-directed therapies. In vitro analysis confirmed that the HER2 mutations conferred estrogen independence as well as—in contrast to ER mutations—resistance to tamoxifen, fulvestrant and the CDK4 and CDK6 inhibitor palbociclib. Resistance was overcome by combining ER-directed therapy with the irreversible HER2 kinase inhibitor neratinib. Activating HER2 mutations are shown to confer resistance to ER-directed therapies in patients with ER + metastatic breast cancer. Drug resistance caused by HER2 mutations was overcome by combining ER-directed therapy with a HER2 kinase inhibitor.
Cancer aneuploidies are shaped primarily by effects on tumour fitness
Aneuploidies—whole-chromosome or whole-arm imbalances—are the most prevalent alteration in cancer genomes 1 , 2 . However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events 1 , 2 . Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness 1 , 2 . These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis. A study reports the development of an algorithm, BISCUT, that detects genomic loci under selective pressure by relying on the distribution of breakpoints across chromosome arms, and uses it to explore how aneuploidies affect tumorigenesis.
Junior scientists spotlight social bonds in seminars for diversity, equity, and inclusion in STEM
Disparities for women and minorities in science, technology, engineering, and math (STEM) careers have continued even amidst mounting evidence for the superior performance of diverse workforces. In response, we launched the Diversity and Science Lecture series, a cross-institutional platform where junior life scientists present their research and comment on diversity, equity, and inclusion in STEM. We characterize speaker representation from 79 profiles and investigate topic noteworthiness via quantitative content analysis of talk transcripts. Nearly every speaker discussed interpersonal support, and three-fifths of speakers commented on race or ethnicity. Other topics, such as sexual and gender minority identity, were less frequently addressed but highly salient to the speakers who mentioned them. We found that significantly co-occurring topics reflected not only conceptual similarity, such as terms for racial identities, but also intersectional significance, such as identifying as a Latina/Hispanic woman or Asian immigrant, and interactions between concerns and identities, including the heightened value of friendship to the LGBTQ community, which we reproduce using transcripts from an independent seminar series. Our approach to scholar profiles and talk transcripts serves as an example for transmuting hundreds of hours of scholarly discourse into rich datasets that can power computational audits of speaker diversity and illuminate speakers’ personal and professional priorities.
Dnmt3a knockout in excitatory neurons impairs postnatal synapse maturation and increases the repressive histone modification H3K27me3
Two epigenetic pathways of transcriptional repression, DNA methylation and polycomb repressive complex 2 (PRC2), are known to regulate neuronal development and function. However, their respective contributions to brain maturation are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, stunted synapse maturation, and impaired working memory and social interest. At the genomic level, loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving adult neurons with an unmethylated, fetal-like epigenomic pattern at ~222,000 genomic regions. The PRC2-associated histone modification, H3K27me3, increased at many of these sites. Our data support a dynamic interaction between two fundamental modes of epigenetic repression during postnatal maturation of excitatory neurons, which together confer robustness on neuronal regulation.
Cycling cancer persister cells arise from lineages with distinct programs
Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure 1 , where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment 2 . Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell’s clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence. Lineage tracing by barcoding of individual cells using a lentivirus library shows that cycling and non-cycling drug-tolerant persister cells in cancer arise from different lineages with distinct transcriptional and metabolic programs.
Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity
Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial–mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines. Single-cell RNA-seq of a collection of 200 cancer cell lines finds common, recurrent heterogeneous expression programs, which also are found in patient samples and are linked to cell state and drug sensitivity.
The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation
Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro , and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU–NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo . Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces. Neuromedin receptor NMUR1 is specifically expressed by a subpopulation of type 2 innate lymphoid cells and promotes the inflammatory response of these cells in response to allergens, indicating the importance of neuro-immune crosstalk in allergic responses. Neuron regulation of immune cells Vijay Kuchroo and colleagues use single-cell RNA sequencing techniques to analyse the responses of lung innate lymphoid cells in mice to the epithelial-cell-derived cytokines IL-15 and IL-33. They identify the neuromedin U receptor NMUR1 as a receptor specifically expressed by a subpopulation of type 2 innate lymphoid cells (ILC2s), and show that it is activated by IL-25 plus the neuropeptide ligand neuromedin U (NMU), generating a lung inflammatory response. Loss of NMU–NMUR1 signalling results in allergic lung inflammation.
Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion
Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)–Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)–JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58 . Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion. Pooled CRISPR perturbation screens with multimodal RNA and protein single-cell profiling readout (Perturb-CITE-seq) applied to patient-derived melanoma and tumor-infiltrating lymphocyte co-cultures identifies new tumor immune evasion mechanisms.
A single-cell landscape of high-grade serous ovarian cancer
Malignant abdominal fluid (ascites) frequently develops in women with advanced high-grade serous ovarian cancer (HGSOC) and is associated with drug resistance and a poor prognosis 1 . To comprehensively characterize the HGSOC ascites ecosystem, we used single-cell RNA sequencing to profile ~11,000 cells from 22 ascites specimens from 11 patients with HGSOC. We found significant inter-patient variability in the composition and functional programs of ascites cells, including immunomodulatory fibroblast sub-populations and dichotomous macrophage populations. We found that the previously described immunoreactive and mesenchymal subtypes of HGSOC, which have prognostic implications, reflect the abundance of immune infiltrates and fibroblasts rather than distinct subsets of malignant cells 2 . Malignant cell variability was partly explained by heterogeneous copy number alteration patterns or expression of a stemness program. Malignant cells shared expression of inflammatory programs that were largely recapitulated in single-cell RNA sequencing of ~35,000 cells from additionally collected samples, including three ascites, two primary HGSOC tumors and three patient ascites-derived xenograft models. Inhibition of the JAK/STAT pathway, which was expressed in both malignant cells and cancer-associated fibroblasts, had potent anti-tumor activity in primary short-term cultures and patient-derived xenograft models. Our work contributes to resolving the HSGOC landscape 3 – 5 and provides a resource for the development of novel therapeutic approaches. Single-cell transcriptomics analysis of malignant ascites samples from patients with high-grade serous ovarian cancer reveals inter- and intra-patient heterogeneity in malignant cells, cancer-associated fibroblasts and macrophages.
Transcriptional mediators of treatment resistance in lethal prostate cancer
Metastatic castration-resistant prostate cancer is typically lethal, exhibiting intrinsic or acquired resistance to second-generation androgen-targeting therapies and minimal response to immune checkpoint inhibitors 1 . Cellular programs driving resistance in both cancer and immune cells remain poorly understood. We present single-cell transcriptomes from 14 patients with advanced prostate cancer, spanning all common metastatic sites. Irrespective of treatment exposure, adenocarcinoma cells pervasively coexpressed multiple androgen receptor isoforms, including truncated isoforms hypothesized to mediate resistance to androgen-targeting therapies 2 , 3 . Resistance to enzalutamide was associated with cancer cell–intrinsic epithelial–mesenchymal transition and transforming growth factor-β signaling. Small cell carcinoma cells exhibited divergent expression programs driven by transcriptional regulators promoting lineage plasticity and HOXB5, HOXB6 and NR1D2 (refs. 4 – 6 ). Additionally, a subset of patients had high expression of dysfunction markers on cytotoxic CD8 + T cells undergoing clonal expansion following enzalutamide treatment. Collectively, the transcriptional characterization of cancer and immune cells from human metastatic castration-resistant prostate cancer provides a basis for the development of therapeutic approaches complementing androgen signaling inhibition. Single-cell transcriptomic analysis of metastatic castration-resistant prostate cancer uncovers pervasive coexpression of androgen receptor isoforms and cancer cell–intrinsic and microenvironmental programs of treatment resistance