Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
25
result(s) for
"Czarnecki, Wojciech M."
Sort by:
α-Rank: Multi-Agent Evaluation by Evolution
by
Rowland, Mark
,
Czarnecki, Wojciech M.
,
Tuyls, Karl
in
631/1647/2198
,
631/181/2469
,
639/705/117
2019
We introduce
α
-
Rank
, a principled evolutionary dynamics methodology, for the
evaluation
and
ranking
of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called
Markov
-
Conley chains
(MCCs). The approach leverages continuous-time and discrete-time evolutionary dynamical systems applied to empirical games, and scales tractably in the number of agents, in the type of interactions (beyond dyadic), and the type of empirical games (symmetric and asymmetric). Current models are fundamentally limited in one or more of these dimensions, and are not guaranteed to converge to the desired game-theoretic solution concept (typically the Nash equilibrium).
α
-Rank automatically provides a ranking over the set of agents under evaluation and provides insights into their strengths, weaknesses, and long-term dynamics in terms of basins of attraction and sink components. This is a direct consequence of the correspondence we establish to the dynamical MCC solution concept when the underlying evolutionary model’s ranking-intensity parameter,
α
, is chosen to be large, which exactly forms the basis of
α
-Rank. In contrast to the Nash equilibrium, which is a static solution concept based solely on fixed points, MCCs are a dynamical solution concept based on the Markov chain formalism, Conley’s Fundamental Theorem of Dynamical Systems, and the core ingredients of dynamical systems: fixed points, recurrent sets, periodic orbits, and limit cycles. Our
α
-Rank method runs in polynomial time with respect to the total number of pure strategy profiles, whereas computing a Nash equilibrium for a general-sum game is known to be intractable. We introduce mathematical proofs that not only provide an overarching and unifying perspective of existing continuous- and discrete-time evolutionary evaluation models, but also reveal the formal underpinnings of the
α
-Rank methodology. We illustrate the method in canonical games and empirically validate it in several domains, including AlphaGo, AlphaZero, MuJoCo Soccer, and Poker.
Journal Article
Navigating the landscape of multiplayer games
2020
Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused on using well-known games to build strong agents. This progress, however, can be better informed by characterizing games and their topological landscape. Tackling this latter question can facilitate understanding of agents and help determine what game an agent should target next as part of its training. Here, we show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games, quantifying relationships between games of varying sizes and characteristics. We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another. Our results culminate in a demonstration leveraging this information to generate new and interesting games, including mixtures of empirical games synthesized from real world games.
Multiplayer games can be used as testbeds for the development of learning algorithms for artificial intelligence. Omidshafiei et al. show how to characterize and compare such games using a graph-based approach, generating new games that could potentially be interesting for training in a curriculum.
Journal Article
Human-level performance in 3D multiplayer games with population-based reinforcement learning
by
Rabinowitz, Neil C.
,
Sonnerat, Nicolas
,
Dunning, Iain
in
Agents (artificial intelligence)
,
Artificial intelligence
,
Computer & video games
2019
Artificially intelligent agents are getting better and better at two-player games, but most real-world endeavors require teamwork. Jaderberg et al. designed a computer program that excels at playing the video game Quake III Arena in Capture the Flag mode, where two multiplayer teams compete in capturing the flags of the opposing team. The agents were trained by playing thousands of games, gradually learning successful strategies not unlike those favored by their human counterparts. Computer agents competed successfully against humans even when their reaction times were slowed to match those of humans. Science , this issue p. 859 Teams of artificial agents compete successfully against humans in the video game Quake III Arena in Capture the Flag mode. Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input. We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.
Journal Article
Grandmaster level in StarCraft II using multi-agent reinforcement learning
2019
Many real-world applications require artificial agents to compete and coordinate with other agents in complex environments. As a stepping stone to this goal, the domain of StarCraft has emerged as an important challenge for artificial intelligence research, owing to its iconic and enduring status among the most difficult professional esports and its relevance to the real world in terms of its raw complexity and multi-agent challenges. Over the course of a decade and numerous competitions
1
–
3
, the strongest agents have simplified important aspects of the game, utilized superhuman capabilities, or employed hand-crafted sub-systems
4
. Despite these advantages, no previous agent has come close to matching the overall skill of top StarCraft players. We chose to address the challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex domains: a multi-agent reinforcement learning algorithm that uses data from both human and agent games within a diverse league of continually adapting strategies and counter-strategies, each represented by deep neural networks
5
,
6
. We evaluated our agent, AlphaStar, in the full game of StarCraft II, through a series of online games against human players. AlphaStar was rated at Grandmaster level for all three StarCraft races and above 99.8% of officially ranked human players.
AlphaStar uses a multi-agent reinforcement learning algorithm and has reached Grandmaster level, ranking among the top 0.2% of human players for the real-time strategy game StarCraft II.
Journal Article
Extremely Randomized Machine Learning Methods for Compound Activity Prediction
by
Czarnecki, Wojciech
,
Bojarski, Andrzej
,
Podlewska, Sabina
in
Algorithms
,
compounds classification
,
Datasets
2015
Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.
Journal Article
Robust optimization of SVM hyperparameters in the classification of bioactive compounds
by
Czarnecki, Wojciech M
,
Bojarski, Andrzej J
,
Podlewska, Sabina
in
Bioactive compounds
,
Chemistry
,
Chemistry and Materials Science
2015
Background
Support Vector Machine has become one of the most popular machine learning tools used in virtual screening campaigns aimed at finding new drug candidates. Although it can be extremely effective in finding new potentially active compounds, its application requires the optimization of the hyperparameters with which the assessment is being run, particularly the
C
and
γ
values. The optimization requirement in turn, establishes the need to develop fast and effective approaches to the optimization procedure, providing the best predictive power of the constructed model.
Results
In this study, we investigated the Bayesian and random search optimization of Support Vector Machine hyperparameters for classifying bioactive compounds. The effectiveness of these strategies was compared with the most popular optimization procedures—grid search and heuristic choice. We demonstrated that Bayesian optimization not only provides better, more efficient classification but is also much faster—the number of iterations it required for reaching optimal predictive performance was the lowest out of the all tested optimization methods. Moreover, for the Bayesian approach, the choice of parameters in subsequent iterations is directed and justified; therefore, the results obtained by using it are constantly improved and the range of hyperparameters tested provides the best overall performance of Support Vector Machine. Additionally, we showed that a random search optimization of hyperparameters leads to significantly better performance than grid search and heuristic-based approaches.
Conclusions
The Bayesian approach to the optimization of Support Vector Machine parameters was demonstrated to outperform other optimization methods for tasks concerned with the bioactivity assessment of chemical compounds. This strategy not only provides a higher accuracy of classification, but is also much faster and more directed than other approaches for optimization. It appears that, despite its simplicity, random search optimization strategy should be used as a second choice if Bayesian approach application is not feasible.
Graphical abstract
The improvement of classification accuracy obtained after the application of Bayesian approach to the optimization of Support Vector Machines parameters.
Journal Article
Human-level performance in 3D multiplayer games with populationbased reinforcement learning
2019
Reinforcement learning (RL) has shown great success in increasingly complex single-agent environments and two-player turn-based games. However, the real world contains multiple agents, each learning and acting independently to cooperate and compete with other agents. We used a tournament-style evaluation to demonstrate that an agent can achieve human-level performance in a three-dimensional multiplayer first-person video game, Quake III Arena in Capture the Flag mode, using only pixels and game points scored as input.We used a two-tier optimization process in which a population of independent RL agents are trained concurrently from thousands of parallel matches on randomly generated environments. Each agent learns its own internal reward signal and rich representation of the world. These results indicate the great potential of multiagent reinforcement learning for artificial intelligence research.
Journal Article
Navigating the Landscape of Multiplayer Games
by
Rowland, Mark
,
Czarnecki, Wojciech M
,
De Vylder, Bart
in
Agents (artificial intelligence)
,
Artificial intelligence
,
Fruit flies
2020
Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused on using well-known games to build strong agents. This progress, however, can be better informed by characterizing games and their topological landscape. Tackling this latter question can facilitate understanding of agents and help determine what game an agent should target next as part of its training. Here, we show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games, quantifying relationships between games of varying sizes and characteristics. We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another. Our results culminate in a demonstration leveraging this information to generate new and interesting games, including mixtures of empirical games synthesized from real world games.
Discovering Reinforcement Learning Algorithms
by
Singh, Satinder
,
Czarnecki, Wojciech M
,
Hado van Hasselt
in
Algorithms
,
Liquefied petroleum gas
,
Machine learning
2021
Reinforcement learning (RL) algorithms update an agent's parameters according to one of several possible rules, discovered manually through years of research. Automating the discovery of update rules from data could lead to more efficient algorithms, or algorithms that are better adapted to specific environments. Although there have been prior attempts at addressing this significant scientific challenge, it remains an open question whether it is feasible to discover alternatives to fundamental concepts of RL such as value functions and temporal-difference learning. This paper introduces a new meta-learning approach that discovers an entire update rule which includes both 'what to predict' (e.g. value functions) and 'how to learn from it' (e.g. bootstrapping) by interacting with a set of environments. The output of this method is an RL algorithm that we call Learned Policy Gradient (LPG). Empirical results show that our method discovers its own alternative to the concept of value functions. Furthermore it discovers a bootstrapping mechanism to maintain and use its predictions. Surprisingly, when trained solely on toy environments, LPG generalises effectively to complex Atari games and achieves non-trivial performance. This shows the potential to discover general RL algorithms from data.
Adapting Auxiliary Losses Using Gradient Similarity
by
Lakshminarayanan, Balaji
,
Jayakumar, Siddhant M
,
Du, Yunshu
in
Domains
,
Machine learning
,
Neural networks
2020
One approach to deal with the statistical inefficiency of neural networks is to rely on auxiliary losses that help to build useful representations. However, it is not always trivial to know if an auxiliary task will be helpful for the main task and when it could start hurting. We propose to use the cosine similarity between gradients of tasks as an adaptive weight to detect when an auxiliary loss is helpful to the main loss. We show that our approach is guaranteed to converge to critical points of the main task and demonstrate the practical usefulness of the proposed algorithm in a few domains: multi-task supervised learning on subsets of ImageNet, reinforcement learning on gridworld, and reinforcement learning on Atari games.