Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
79
result(s) for
"Dáttilo, Wesley"
Sort by:
Ant social foraging strategies along a Neotropical gradient of urbanization
2021
During the last decades, urbanization has been highlighted as one of the main causes of biodiversity loss worldwide. Among organisms commonly associated with urban environments, ants occupy urbanized green areas and can live both inside and around human settlements. However, despite the increasing number of studies on the ecological dynamics of ant species developed mainly in temperate urban ecosystems, there is still little knowledge about the behavioral strategies that allow ant species to live and even thrive within cities. In this study, we evaluated the role of urbanization in shaping ant communities, including their social foraging, considering built cover as a gradually changing variable that describes an urban gradient. Specifically, we assessed whether species richness, composition, and the proportion of exotic ant species are related to an urban gradient in a medium-sized Neotropical city immersed in a cloud forest context in Mexico. Moreover, we evaluated the social foraging strategies that could promote ant species coexistence in an urban environment. In general, and contrary to our hypothesis, we found no evidence that the built cover gradient affected the richness, composition, or proportion of exotic ant species foraging on food resources, indicating a filtering and simplification of ant communities given by urbanization. Moreover, we show for the first time that urban ant species exhibited a “discovery-defense strategy”, whereby the ant species with the greatest capacity to discover new food resources were those that showed the greatest ability to monopolize it after 120 min of observation, regardless of the type of resource (i.e., tuna or honey bait). Our findings have a direct impact on the knowledge about how urbanization shapes ant communities and behavior, by showing the foraging strategies of ant species that feed on similar food resources present that allows them to coexist in urban environments.
Journal Article
Unmasking the architecture of ant–diaspore networks in the Brazilian Savanna
2018
Ant-diaspore interactions are directly related to fruit consumption, seed predation and dispersal, being determinant for the plant fitness. However, although abundant and diversified, these ecological interactions have been neglected in network studies. Understanding the structure of these networks is the first step in preserving these ecological functions. However, describing the network structure is not enough; we need to understand what mechanisms are behind the network patterns. In this study, for the first time, we describe the structure of the ant-diaspore network, considering only the interactions that can benefit plants, separating it into fruit consumption and diaspore removal networks in the Brazilian Savanna. We postulated that ant-diaspore interactions tend to be more specialized in the diaspore removal network compared to the fruit consumption network. Furthermore, we tested whether morphological features, such as size of mandibles of ants and diaspores, could modulate these ecological networks. Overall, we recorded 24 ant and 29 plant species interacting. We found that fruit consumption and diaspore removal networks exhibited similar patterns of interactions (i.e., non-modular), although only the diaspore removal network was nested. The diaspore removal network did not show a more specialized pattern than the fruit consumption network, since both networks consisted of opportunistic interactions. We found that ant mandible and diaspore size does not explain the structure of ecological networks, but in diaspore removal networks the relationship between these morphological traits may explain the pattern of interactions. Thus, we showed that mandible size of ants may have implications on seedling recruitment, suggesting that mandible size can predict possible effects on plant fitness within in diaspore removal networks. Overall, ant-diaspore networks maintain important ecological functions, such as fruit consumption and seed dispersal, which often implies an increase in reproductive success of the plants.
Journal Article
Past, present and future in the geographical distribution of Mexican Tepezmaite cycads: Genus Ceratozamia
by
Gómez-Díaz, Jorge Antonio
,
Dáttilo, Wesley
,
Carvajal-Hernández, César Isidro
in
Biology and Life Sciences
,
Climate Change
,
Cycadales
2024
Ceratozamia morettii , C . brevifrons , and C . tenuis are cycads considered endangered in montane forests in the center of Veracruz state. However, the amount of theoretical and empirical information available on the historical distribution of these species and how they could be affected in the future by the effects of climate change still needs to be increased. Our objective was to generate information on the spatial distribution of the species since the last glacial maximum, present, and future. To map the spatial distribution of species, we created a potential distribution model for each species. The spatial data used for the models included 19 bioclimatic data variables in the present, at the last glacial maximum using two models (CCSM4 and MIROC), and in the future (2080) using two models of the RCP 8.5 scenario of climate change (HadGEM2-CC and MIROC5). We found that each species occupies a unique ecoregion and climatic niche. Ceratozamia morettii and C . tenuis have a similar pattern with an expansion of their distribution area since the last glacial maximum with a larger distribution area in the present and a projected reduction in their distribution under future climatic conditions. For C . brevifrons , we also showed an increase in their distributional area since the last glacial maximum. We also showed that this expansion will continue under future climatic conditions when the species reaches its maximum distributional area. Projections about the future of these endemic cycad species show changes in their habitat, highlighting that temperate zone species ( C . morettii and C . tenuis ) will face imminent extinction if no effort is made to protect them. On the other hand, the tropical climate species ( C . brevifrons ) will be favored.
Journal Article
Canopy Openness Enhances Diversity of Ant–Plant Interactions in the Brazilian Amazon Rain Forest
2014
In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments.
Journal Article
The scaling of seed‐dispersal specialization in interaction networks across levels of organization
2025
Natural ecosystems are characterized by a specialization pattern where few species are common while many others are rare. In ecological networks involving biotic interactions, specialization operates as a continuum at individual, species, and community levels. Theory predicts that ecological and evolutionary factors can primarily explain specialization. However, we still do not understand how specialization scales from individuals to the community. This question has been addressed by the emerging research program on the macroecology of biotic interactions, which focuses on ecological networks and macroecological theory to investigate biotic interaction patterns along environmental and geographical gradients. Based on the ecological and evolutionary traits of interacting species, the study of ecological networks traditionally focused on the characterization of whole community networks or on particular species as independent ecological units. Instead, the macroecological perspective requires a shift towards assessing network variation across ecological gradients while also accounting for different temporal (hours, days, and years) and spatial (local, regional, and global) scales and levels of network organization (individual‐based, species‐based, and meta‐networks). Despite the feasibility of scaling data, the variation across individuals, species, and communities in relation to network organizational level and geographic and environmental gradients remains unknown. Understanding the mechanisms driving species roles across different network levels is crucial for addressing knowledge gaps, which in turn requires synthesizing and clarifying the available information on these concepts. Thus, in this study, we aim to examine the factors shaping seed‐dispersal specialization in ecological networks and to review recent advances, outcomes, and future directions in the field of macroecology of biotic interactions related to specialization. By unraveling the factors and mechanisms posed to explain the role of individuals and species across ecological network levels, we shed light on the processes underlying the assembling of natural communities and offer insights into specialization gradients.
Journal Article
Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot
by
Dáttilo, Wesley
,
Villegas-Patraca, Rafael
,
Luna, Pedro
in
Animals
,
Biodiversity
,
Biodiversity hot spots
2023
Although biological invasions are a common and intensively studied phenomenon, most studies often ignore the biotic interactions that invasive species play in the environment. Here, we evaluated how and why invasive plant species are interconnected within the overall frugivory network of the Brazilian Atlantic Forest, an important global biodiversity hotspot. To do this, we used the recently published Atlantic Frugivory Dataset to build a meta-network (i.e., a general network made of several local networks) that included interactions between 703 native and invasive plant species and 331 frugivore species. Using tools derived from complex network theory and a bootstrap simulation approach, we found that the general structure of the Atlantic Forest frugivory network (i.e., nestedness and modularity) is robust against the entry of invasive plant species. However, we observed that invasive plant species are highly integrated within the frugivory networks, since both native and invasive plant species play similar structural roles (i.e., plant status is not strong enough to explain the interactive roles of plant species). Moreover, we found that plants with smaller fruits and with greater lipid content play a greater interactive role, regardless of their native or invasive status. Our findings highlight the biotic homogenization involving plant–frugivore interactions in the Atlantic Forest and that the impacts and consequences of invasive plant species on native fauna can be anticipated based on the characteristics of their fruits.
Journal Article
Drivers of the structure of plant–hummingbird interaction networks at multiple temporal scales
by
Dáttilo, Wesley
,
MacGregor-Fors, Ian
,
Vizentin-Bugoni, Jeferson
in
Analysis
,
Annual variations
,
Arid environments
2020
In semi-arid environments, the marked contrast in temperature and precipitation over the year strongly shapes ecological communities. The composition of species and their ecological interactions within a community may vary greatly over time. Although intra-annual variations are often studied, empirical information on how plant–bird relationships are structured within and among years, and how their drivers may change over time are still limited. In this study, we analyzed the temporal dynamics of the structure of plant–hummingbird interaction networks by evaluating changes in species richness, diversity of interactions, modularity, network specialization, nestedness, and β-diversity of interactions throughout four years in a Mexican xeric shrubland landscape. We also evaluated if the relative importance of abundance, phenology, morphology, and nectar sugar content consistently explains the frequency of pairwise interactions between plants and hummingbirds across different years. We found that species richness, diversity of interactions, nestedness, and network specialization did vary within and among years. We also observed that the β-diversity of interactions was high among years and was mostly associated with species turnover (i.e., changes in species composition), with a minor contribution of interaction rewiring (i.e., shifting partner species at different times). Finally, the temporal co-occurrence of hummingbird and plant species among months was the best predictor of the frequency of pairwise interactions, and this pattern was consistent within and among years. Our study underscores the importance of considering the temporal scale to understand how changes in species phenologies, and the resulting temporal co-occurrences influence the structure of interaction networks.
Journal Article
Macroecological patterns and correlates of ant–tree interaction networks in Neotropical savannas
2019
Aim Similar to species richness, ecological interactions can vary across latitudinal and environmental gradients. Knowing the patterns and drivers of such variation could help us to better understand the role of species interactions in maintaining biodiversity. In this study, we analysed the macroecological patterns of the structure and interaction beta diversity of interaction networks involving trees and ants. Location Twenty‐nine sites encompassing 20 degrees of latitude throughout the Neotropical savanna. Time period 2010–2015. Major taxa studied Trees and arboreal nesting ants. Methods For each site, we built an interaction network and calculated network size, interaction diversity (Shannon diversity of interactions), specialization, modularity, nestedness, and interaction dissimilarity (contribution of each network to the regional pool of possible interactions). We also determined how interaction beta diversity varied among all sampling sites. Net primary productivity (NPP), temperature and rainfall were evaluated as potential correlates of the observed changes in network descriptors and interaction beta diversity. Results We found no latitudinal gradient in network specialization, nestedness or modularity. However, sites at higher latitudes had larger networks, higher interaction diversity and higher interaction dissimilarity, and this was correlated mainly with the latitudinal variation in NPP. Interaction rewiring generated by the reassembly of the interactions between the same species in different sites was the main contributor to the total interaction beta diversity. However, the level of interaction rewiring was independent of the geographical and environmental distance between sampling sites. Main conclusions Ant–tree network structure remained relatively invariant across the latitudinal and environmental gradient possibly due to high interaction rewiring among the partners. Moreover, our findings show that more productive sites, located at higher latitudes, have high dissimilarity to the regional pool of possible interactions (i.e., strong interaction filtering), indicating that these sites significantly contribute to the maintenance of interaction biodiversity in Neotropical savannas.
Journal Article
Spatial structure of ant-plant mutualistic networks
by
Dáttilo, Wesley
,
Guimarães, Paulo R.
,
Izzo, Thiago J.
in
Amazonia
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2013
The structure of mutualistic networks provides insights into ecological and coevolutionary dynamics of interacting species. However, the spatial effect has only recently been incorporated as a factor structuring mutualistic networks. In this study, we evaluated how the topological structure and species turnover of ant–plant mutualistic networks vary over a spatial gradient. We showed that although the ant and plant composition of networks changed over space, the central core of generalist species and the structure of networks remained unaltered on a geographic distance of up to 5099 m in the southern Brazilian Amazon. This finding indicates that independently of variation in local and landscape environmental factors, the nonrandom pattern organization of these interacting assemblages do not change. Finally, we suggest that a stable core can increase the potential for coevolutionary convergence of traits among species from both sides of the interaction within the community. These findings contribute to our understanding of the maintenance of biodiversity and coevolutionary processes.
Journal Article
Tropical Forest Fragmentation Affects Floral Visitors but Not the Structure of Individual-Based Palm-Pollinator Networks
by
Dáttilo, Wesley
,
Quesada, Mauricio
,
Aguirre, Armando
in
Abundance
,
Animal reproduction
,
Animals
2015
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
Journal Article