Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Díaz-Muñoz, Manuel D."
Sort by:
Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells
by
Turner, Martin
,
Díaz-Muñoz, Manuel D.
,
Kiselev, Vladimir Yu
in
3' Untranslated Regions
,
631/208/191/2018
,
631/250/1619/40
2017
Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.
Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.
Journal Article
Editorial: Molecular and cellular control of B cell responses: germinal center and extrafollicular responses for cellular outputs
2024
[...]the number of MBCs decreases over time in cKO mice compared to controls. [...]we thank all the authors and reviewers for their invaluable contributions; without their efforts, the publication of this Research Topic would not have been possible. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Journal Article
RNA-binding proteins control gene expression and cell fate in the immune system
2018
RNA-binding proteins (RBPs) are essential for the development and function of the immune system. They interact dynamically with RNA to control its biogenesis and turnover by transcription-dependent and transcription-independent mechanisms. In this Review, we discuss the molecular mechanisms by which RBPs allow gene expression changes to occur at different speeds and to varying degrees, and which RBPs regulate the diversity of the transcriptome and proteome. These proteins are nodes for integration of transcriptional and signaling networks and are intimately linked to intermediary metabolism. They are essential components of regulatory feedback mechanisms that maintain immune tolerance and limit inflammation. The role of RBPs in malignancy and autoimmunity has led to their emergence as targets for the development of new therapeutic modalities.
Turner and Díaz-Muñoz discuss the molecular mechanisms by which RNA-binding proteins modulate the diversity of the transcriptome and proteome in immune cells.
Journal Article
Regulation of Cyclooxygenase-2 Expression in Human T Cells by Glucocorticoid Receptor-Mediated Transrepression of Nuclear Factor of Activated T Cells
by
Cacheiro-Llaguno, Cristina
,
Díaz-Muñoz, Manuel D.
,
Serrador, Juan M.
in
Anti-inflammatory agents
,
Binding sites
,
Biochemistry, Molecular Biology
2022
Cyclooxygenase (COX) is the key enzyme in prostanoid synthesis from arachidonic acid (AA). Two isoforms, named COX-1 and COX-2, are expressed in mammalian tissues. The expression of COX-2 isoform is induced by several stimuli including cytokines and mitogens, and this induction is inhibited by glucocorticoids (GCs). We have previously shown that the transcriptional induction of COX-2 occurs early after T cell receptor (TCR) triggering, suggesting functional implications of this enzyme in T cell activation. Here, we show that dexamethasone (Dex) inhibits nuclear factor of activated T cells (NFAT)-mediated COX-2 transcriptional induction upon T cell activation. This effect is dependent on the presence of the GC receptor (GR), but independent of a functional DNA binding domain, as the activation-deficient GRLS7 mutant was as effective as the wild-type GR in the repression of NFAT-dependent transcription. Dex treatment did not disturb NFAT dephosphorylation, but interfered with activation mediated by the N-terminal transactivation domain (TAD) of NFAT, thus pointing to a negative cross-talk between GR and NFAT at the nuclear level. These results unveil the ability of GCs to interfere with NFAT activation and the induction of pro-inflammatory genes such as COX-2, and explain some of their immunomodulatory properties in activated human T cells.
Journal Article
Deletion of AU-Rich Elements within the Bcl2 3′UTR Reduces Protein Expression and B Cell Survival In Vivo
by
Turner, Martin
,
Díaz-Muñoz, Manuel D.
,
Bell, Sarah E.
in
3' Untranslated regions
,
Apoptosis
,
Bioinformatics
2015
Post-transcriptional mRNA regulation by RNA binding proteins (RBPs) associated with AU-rich elements (AREs) present in the 3′ untranslated region (3’UTR) of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3’UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3’UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.
Journal Article
Role of Peroxisome Proliferator-Activated Receptor Alpha in the Control of Cyclooxygenase 2 and Vascular Endothelial Growth Factor: Involvement in Tumor Growth
by
Cacheiro-Llaguno, Cristina
,
Díaz-Muñoz, Manuel D.
,
Iñiguez, Miguel A.
in
Angiogenesis
,
Apoptosis
,
Cancer
2008
A growing body of evidence indicates that PPAR (peroxisome proliferator-activated receptor) α agonists might have therapeutic usefulness in antitumoral therapy by decreasing abnormal cell growth, and reducing tumoral angiogenesis. Most of the anti-inflammatory and antineoplastic properties of PPAR ligands are due to their inhibitory effects on transcription of a variety of genes involved in inflammation, cell growth and angiogenesis. Cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF) are crucial agents in inflammatory and angiogenic processes. They also have been significantly associated to cell proliferation, tumor growth, and metastasis, promoting tumor-associated angiogenesis. Aberrant expression of VEGF and COX-2 has been observed in a variety of tumors, pointing to these proteins as important therapeutic targets in the treatment of pathological angiogenesis and tumor growth. This review summarizes the current understanding of the role of PPARα and its ligands in the regulation of COX-2 and VEGF gene expression in the context of tumor progression.
Journal Article
The RNA binding proteins TIA1 and TIAL1 promote Mcl1 mRNA translation to protect germinal center responses from apoptosis
2023
Germinal centers (GCs) are essential for the establishment of long-lasting antibody responses. GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into functional changes in the cell proteome. However, the critical proteins driving these key mechanisms are still unknown. Here, we show that the RNA binding proteins TIA1 and TIAL1 are required for the generation of long-lasting GC responses. TIA1- and TIAL1-deficient GC B cells fail to undergo antigen-mediated positive selection, expansion and differentiation into B-cell clones producing high-affinity antibodies. Mechanistically, TIA1 and TIAL1 control the transcriptional identity of dark- and light-zone GC B cells and enable timely expression of the prosurvival molecule MCL1. Thus, we demonstrate here that TIA1 and TIAL1 are key players in the post-transcriptional program that selects high-affinity antigen-specific GC B cells.
Journal Article
Deletion of AU-rich elements within the Bcl2 3'UTR reduces protein expression and B cell survival in vivo
by
Bell, Sarah E
,
Turner, Martin
,
Díaz-Muñoz, Manuel D
in
Animals
,
AU Rich Elements - genetics
,
B cells
2015
Post-transcriptional mRNA regulation by RNA binding proteins (RBPs) associated with AU-rich elements (AREs) present in the 3' untranslated region (3'UTR) of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.
Journal Article
RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence
by
Díaz-Muñoz, Manuel D.
,
Hodson, Daniel J.
,
Andrews, Simon
in
Animals
,
Antigens
,
B-Lymphocytes - cytology
2016
Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR–induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint.
Journal Article
The RNA-binding protein HuR is required for maintenance of the germinal centre response
2021
The germinal centre (GC) is required for the generation of high affinity antibodies and immunological memory. Here we show that the RNA binding protein HuR has an essential function in GC B cells to sustain the GC response. In its absence, the GC reaction and production of high-affinity antibody is severely impaired. Mechanistically, HuR affects the transcriptome qualitatively and quantitatively. The expression and splicing patterns of hundreds of genes are altered in the absence of HuR. Among these genes, HuR is required for the expression of Myc and a Myc-dependent transcriptional program that controls GC B cell proliferation and Ig somatic hypermutation. Additionally, HuR regulates the splicing and abundance of mRNAs required for entry into and transition through the S phase of the cell cycle, and it modulates a gene signature associated with DNA deamination protecting GC B cells from DNA damage and cell death.
Germinal centre (GC) responses may require RNA binding proteins (RBP) for post-transcriptional gene regulation. Here the authors show the RBP HuR supports GCs by promoting Myc and Myc-dependent transcription to enhance antigen-specific GC B cell selection and production of high affinity antibodies.
Journal Article