Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
90
result(s) for
"Daimon, Makoto"
Sort by:
Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience
by
Daimon, Makoto
,
Iwasaki, Yasumasa
,
Kageyama, Kazunori
in
Adaptation, Physiological - physiology
,
Adrenal glands
,
Adrenocorticotropic Hormone - metabolism
2021
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.
Journal Article
Eosinophil counts can be a predictive marker of immune checkpoint inhibitor-induced secondary adrenal insufficiency: a retrospective cohort study
2022
Immune checkpoint inhibitors (ICIs) treatment can result in endocrine immune-related adverse events (irAEs), including pituitary dysfunction. Quick diagnosis of secondary adrenal insufficiency (AI) is challenging because no universal definition of ICI-induced secondary AI has been agreed. The aim of this study was to clarify the clinical features of ICI-induced secondary AI that can be used for screening in standard clinical practice. This retrospective study was performed using the medical records of patients who received ICIs at Hirosaki University Hospital between 1 September 2014 and 31 January 2021. Longitudinal clinical data of patients who developed AI were analyzed and compared with the data of thyroid irAEs. Regression analysis showed a significant correlation between ICI-induced secondary AI and absolute or relative eosinophil counts at pre-onset of AI, as well as differences or rate of increase in eosinophil counts at baseline and at pre-onset. Absolute eosinophil counts > 198.36/µL or relative eosinophil counts > 5.6% at pre-onset, and a difference of 65.25/µL or a rate of eosinophil count increase of 1.97 between the baseline and at pre-onset showed the best sensitivity and specificity. This is the first report to demonstrate that eosinophil counts can be a predictor of ICI-induced secondary AI.
Journal Article
Higher fasting blood glucose worsens knee symptoms in patients with radiographic knee osteoarthritis and comorbid central sensitization: an Iwaki cohort study
by
Sasaki, Eiji
,
Ishibashi, Yasuyuki
,
Daimon, Makoto
in
Activities of daily living
,
Arthritis
,
Blood Glucose
2022
Background
Although cross-sectional and cohort data suggest that higher serum blood glucose levels in patients with knee osteoarthritis (KOA) are associated with more severe knee symptoms, little is known about the longitudinal relationship between serum blood glucose and knee symptoms, particularly considering central sensitization (CS) comorbidity, which also worsens knee symptoms.
Methods
We evaluated the longitudinal relationship between serum blood glucose and knee symptoms by dividing the cohort of patients with KOA into those with and without CS. We hypothesized that higher serum blood glucose levels would worsen knee symptoms. A total of 297 participants (mean age: 59.6 years; females: 211; average BMI: 23.7 kg/m
2
) were enrolled in this study. At baseline, plain radiographs of the bilateral knee joints were evaluated according to the Kellgren–Lawrence grade (KLG). All participants exhibited at least a KLG ≥ 2 in each knee. At baseline, fasting blood glucose (FBG) and Central Sensitization Inventory-9 (CSI-9) were evaluated; ≥ 10 points on the CSI-9 was defined as CS+. Knee injury and Osteoarthritis Outcome Score (KOOS) was evaluated at baseline and at 1-year follow-up; the change in KOOS (ΔKOOS) was calculated by subtracting the KOOS at baseline from that at the 1-year follow-up. Multiple linear regression analysis was conducted with ΔKOOS as the dependent variable and FBG at baseline as the independent variable, adjusted for age, sex, BMI, and CSI-9 at baseline.
Results
Of the 297 subjects, 48 (16.2 %) were defined as CS+. In the CS − group, there was no association between FBG levels at baseline and ΔKOOS. In contrast, FBG at baseline was negatively associated with ΔKOOS pain (
B
= − 0.448;
p
= 0.003), ADL (
B
= − 0.438;
p
= 0.003), and sports (
B
= − 0.706;
p
= 0.007).
Conclusions
In patients with radiographic KOA and CS, higher blood glucose levels were associated with deteriorated knee symptoms during the 1-year follow-up. Healthcare providers should pay attention to controlling blood glucose, particularly in patients with KOA and concurrent CS, to mitigate their knee symptoms.
Study design
Retrospective cohort study (evidence level: III).
Journal Article
Advances in Molecular Pathophysiology and Targeted Therapy for Cushing’s Disease
by
Daimon, Makoto
,
Takayasu, Shinobu
,
Kageyama, Kazunori
in
Adrenal glands
,
Adrenocorticotropic hormone
,
Arteriosclerosis
2023
Cushing’s disease is caused by autonomous secretion of adrenocorticotropic hormone (ACTH) from corticotroph pituitary neuroendocrine tumors. As a result, excess cortisol production leads to the overt manifestation of the clinical features of Cushing’s syndrome. Severe complications have been reported in patients with Cushing’s disease, including hypertension, menstrual disorders, hyperglycemia, osteoporosis, atherosclerosis, infections, and mental disorders. Cushing’s disease presents with a variety of clinical features, ranging from overt to subtle. In this review, we explain recent advances in molecular insights and targeted therapy for Cushing’s disease. The pathophysiological characteristics of hormone production and pituitary tumor cells are also explained. Therapies to treat the tumor growth in the pituitary gland and the autonomous hypersecretion of ACTH are discussed. Drugs that target corticotroph pituitary neuroendocrine tumors have been effective, including cabergoline, a dopamine receptor type 2 agonist, and pasireotide, a multi-receptor-targeted somatostatin analog. Some of the drugs that target adrenal hormones have shown potential therapeutic benefits. Advances in potential novel therapies for Cushing’s disease are also introduced.
Journal Article
Differential Effects of Fkbp4 and Fkbp5 on Regulation of the Proopiomelanocortin Gene in Murine AtT-20 Corticotroph Cells
2021
The hypothalamic-pituitary-adrenal axis is stimulated in response to stress. When activated, it is suppressed by the negative feedback effect of glucocorticoids. Glucocorticoids directly inhibit proopiomelanocortin (Pomc) gene expression in the pituitary. Glucocorticoid signaling is mediated via glucocorticoid receptors, 11β-hydroxysteroid dehydrogenases, and the FK506-binding immunophilins, Fkbp4 and Fkbp5. Fkbp4 and Fkbp5 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor, resulting in modulation of the glucocorticoid action. Here, we explored the regulation of Fkbp4 and Fkbp5 genes and their proteins with dexamethasone, a major synthetic glucocorticoid drug, in murine AtT-20 corticotroph cells. To elucidate further roles of Fkbp4 and Fkbp5, we examined their effects on Pomc mRNA levels in corticotroph cells. Dexamethasone decreased Pomc mRNA levels as well as Fkpb4 mRNA levels in mouse corticotroph cells. Dexamethasone tended to decrease Fkbp4 protein levels, while it increased Fkpb5 mRNA and its protein levels. The dexamethasone-induced decreases in Pomc mRNA levels were partially canceled by Fkbp4 knockdown. Alternatively, Pomc mRNA levels were further decreased by Fkbp5 knockdown. Thus, Fkbp4 contributes to the negative feedback of glucocorticoids, and Fkbp5 reduces the efficiency of the glucocorticoid effect on Pomc gene expression in pituitary corticotroph cells.
Journal Article
Association between Higher Serum Cortisol Levels and Decreased Insulin Secretion in a General Population
2016
Glucocorticoids (GCs) are well known to induce insulin resistance. However, the effect of GCs on insulin secretion has not been well characterized under physiological conditions in human. We here evaluated the effect of GCs on insulin secretion/ß-cell function precisely in a physiological condition. A population-based study of 1,071 Japanese individuals enrolled in the 2014 Iwaki study (390 men, 681 women; aged 54.1 ± 15.1 years), those excluded individuals taking medication for diabetes or steroid treatment, were enrolled in the present study. Association between serum cortisol levels and insulin resistance/secretion assessed by homeostasis model assessment using fasting blood glucose and insulin levels (HOMA-R and HOMA-ß, respectively) were examined. Univariate linear regression analyses showed correlation of serum cortisol levels with HOMA-ß (ß = -0.134, p <0.001) but not with HOMA-R (ß = 0.042, p = 0.172). Adjustments for age, gender, and the multiple clinical characteristics correlated with HOMA indices showed similar results (HOMA-ß: ß = -0.062, p = 0.025; HOMA-R: ß = -0.023, p = 0.394). The correlation between serum cortisol levels and HOMA-ß remained significant after adjustment for HOMA- R (ß = -0.057, p = 0.034). When subjects were tertiled based on serum cortisol levels, the highest tertile was at greater risk of decreased insulin secretion (defined as lower one third of HOMA-ß (≤70)) than the lowest tertile, after adjustment for multiple factors including HOMA- R (odds ratio 1.26, 95% confidence interval 1.03-1.54). In conclusion, higher serum cortisol levels are significantly associated with decreased insulin secretion in the physiological cortisol range in a Japanese population.
Journal Article
Nutrient consumption-dependent association of a glucagon-like peptide-1 receptor gene polymorphism with insulin secretion
2020
Since type 2 diabetes (DM) is a life-style related disease, life-style should be considered when association between genetic factors and DM are examined. However, most studies did not examine genetic associations in consideration with lifestyle. Glucagon-like peptide-1 (GLP-1) receptor (GLP1R) mediates the insulinotropic action of GLP-1 in β-cells. We here examined the association while taking into consideration of interactions between the gene polymorphism and various nutrient factors. Participants from the population-based Iwaki study of Japanese subjects held in 2014–2017 with information on nutritional intake evaluated by self-administered dietary history questionnaire, and GLP1R genotype (rs3765467: A/G), were included (n = 1,560). Although not significant, insulin secretion indices assessed by homeostasis model assessment of β-cell function (HOMA-β) in subjects with the GG genotype tended to be lower than in those with the AA+AG genotypes in most groups stratified into tertiles based on daily nutrient consumptions (high, middle, and low). Stratification also showed that the GG genotype was a significant risk for decreased insulin secretion (HOMA-β ≤ 30) even after adjustment for multiple factors (age, body mass index, alcohol consumption), but only in the highest tertiles of energy, protein and carbohydrate consumption in men [odds ratios (95% confidence interval) 3.95 (1.03–15.1), 15.83 (1.58–158.9), and 4.23 (1.10–11.2), respectively]. A polymorphism of the GLP1R gene was associated with decreased insulin secretion in a nutrient consumption-dependent manner in Japanese men, indicating an interaction between GLP1R and nutritional factors in the pathophysiology of DM.
Journal Article
Association between serum prolactin levels and insulin resistance in non-diabetic men
2017
Prolactin (PRL) has roles in various physiological functions. Although experimental studies showed that PRL has both beneficial and adverse effects on type 2 diabetes mellitus, clinical findings in subjects with hyperprolactinemia indicate adverse effects on glucose metabolism. However, effects of PRL within the physiological range in human are controversial. A population-based study of 370 Japanese men enrolled in the 2014 Iwaki study (aged 52.0 ± 14.8 years). In this cross-sectional study, associations between serum PRL levels and homeostatic model assessment (HOMA) indices representing glucose metabolism in a physiological setting were examined using multivariable regression analysis. Although univariate linear regression analyses showed significant associations between serum PRL levels and HOMA indices, adjustment with multiple factors made the association with HOMA-ß (insulin secretion) insignificant, while those with HOMA-R (insulin resistance) remained significant (ß = 0.084, p = 0.035). Non-linear regression analyses showed a regression curve with a peak at serum PRL level, 12.4 ng/mL and a positive association of serum PRL level with HOMA-R below the peak (ß = 0.119, p = 0.004). Higher serum PRL levels within the physiological range seem to be associated with insulin resistance in men.
Journal Article
Islet microangiopathy and augmented β‐cell loss in Japanese non‐obese type 2 diabetes patients who died of acute myocardial infarction
by
Daimon, Makoto
,
Osonoi, Sho
,
Kudoh, Kazuhiro
in
Acute myocardial infarction
,
Amyloid
,
Autopsies
2021
Aims/Introduction Islets have microvessels that might develop pathological alterations similar to microangiopathy in type 2 diabetes patients. It remains unclear, however, whether the changes correlate with endocrine cell deficits or whether the presence of macroangiopathy influences the islet microvasculature in Japanese type 2 diabetes patients. In this study, we characterized changes of the islet microvessels and endocrine cells in Japanese non‐obese patients with type 2 diabetes who died of acute myocardial infarction (AMI). Materials and Methods Clinical profiles and islet pathology were examined for 35 diabetes patients who died of AMI (DM + AMI) and 13 diabetes patients who were free from AMI (DM). A total of 13 age‐matched, individuals without diabetes who died of AMI and 16 individuals without diabetes who were free from AMI were also studied. Pancreata were subjected to morphometric evaluation of islets, including microvascular alterations of immunostained sections. Results Body mass index in DM + AMI was comparable to those in DM. Compared with DM, DM + AMI showed greater glycated hemoglobin levels, higher prevalence of renal failure, hypertension, smaller β‐cell volume density and greater amyloid area. DM + AMI showed an increased microvascular area and density compared with other groups. There was a significant increase in vascular basement membrane thickness and loss of pericytes in DM and DM + AMI compared with individuals without diabetes in each group, and the extent of thickening was correlated with the amyloid area and occurrence of β‐cell loss in DM + AMI. Conclusions Islet microangiopathy was associated with augmented β‐cell loss and amyloid deposition in non‐obese Japanese type 2 diabetes patients who died of AMI. Islet microvessels are assumed to regulate function and morphology of islets. Vascular changes in islets similar to microangiopathy were evident in diabetes complicated with macroangiopathy. Islet microangiopathy was associated with β‐cell deficit in non‐obese Japanese type 2 diabetes patients.
Journal Article
Association between equol producers and type 2 diabetes mellitus among Japanese older adults
2023
Aims/Introduction Equol, which is produced by enteric bacteria from soybean isoflavones, has a chemical structure similar to estrogen. Both in vivo and in vitro studies have shown the beneficial metabolic effects of equol. However, its effects on type 2 diabetes remain unclear. We investigated the association between the equol producers/non‐producers and type 2 diabetes. Materials and Methods The participants included 147 patients with type diabetes mellitus aged 70–89 years, and 147 age‐ and sex‐matched controls. To ascertain the equol producers or non‐producers, we used the comparative logarithm between the urinary equol and daidzein concentrations (cut‐off value −1.75). Results The urinary equol concentration was significantly lower in the diabetes group compared with the non‐diabetes group (P = 0.01). A significant difference in the proportion of equol producers was observed among all participants (38.8% in the diabetes group and 53.1% in the non‐diabetes group; P = 0.01). The proportion of equol producers among women was significantly lower in the diabetes group (31.4%) than in the non‐diabetes group (52.8%; P < 0.01). Additionally, the frequency of dyslipidemia in female equol producers was significantly lower than that in female non‐equol producers (P < 0.01). Among men, no such differences were observed. We found a significant positive correlation between the urinary equol and daidzein concentrations among equol producers (r = 0.55, P < 0.01). Conclusions Our study findings showed that postmenopausal women had a low proportion of equol producers with diabetes and dyslipidemia. The proportion of equol producers among women was significantly lower in the diabetes group compared with the non‐diabetes group.
Journal Article