Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Dal-Bianco, Assunta"
Sort by:
Paramagnetic rim lesions are associated with inner retinal layer thinning and progression independent of relapse activity in multiple sclerosis
2025
Background and purpose
Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a severe disease course in multiple sclerosis (MS). This study was undertaken to investigate an association between retinal layer thinning (annualized loss of peripapillary retinal nerve fiber layer [aLpRNFL] and ganglion cell–inner plexiform layer [aLGCIPL]) and PRLs in patients with MS (pwMS).
Methods
In this study, pwMS with brain magnetic resonance imaging and ≥2 optical coherence tomography scans were included. Cox proportional hazard regression models were performed using progression independent of relapse activity (PIRA) as the dependent variable, and aLpRNFL, aLGCIPL, or the number of PRLs as independent variables, adjusted for covariates.
Results
We analyzed data from 97 pwMS (mean age = 35.2 years [SD = 9.9], 71.1% female, median disease duration = 2.3 years [interquartile range = 0.9–9.0]). The number of PRLs was associated with aLpRNFL and aLGCIPL. PIRA was observed in 18 (18.6%) pwMS, with aLpRNFL (hazard ratio [HR] = 1.44 per %/year), aLGCIPL (HR = 1.61 per %/year), and the number of PRLs (HR = 1.24 per PRL) being associated with increased risk of PIRA.
Conclusions
The number of PRLs is associated with inner retinal layer thinning and increased risk of PIRA. A combination of PRLs and retinal layer thinning could serve as a surrogate for pwMS at highest risk of disability progression.
Journal Article
Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance
2024
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Graphical abstract
Journal Article
Super-resolution QSM in little or no additional time for imaging (NATIve) using 2D EPI imaging in 3 orthogonal planes
by
Bollmann, Steffen
,
Trattnig, Siegfried
,
Robinson, Simon Daniel
in
2D EPI
,
Basal ganglia
,
Basal Ganglia - diagnostic imaging
2023
•Super-resolution isotropic QSM from three orthogonal 2D SMS EPI acquisitions.•NATIve is 25–50 times faster than 3D GRE.•NATIve QSM values agreed well with 3D GRE values in volunteers and MS patients.•The same MS lesions were depicted by 3D GRE and NATIve QSMs.•NATIve is extremely insensitive to motion and achieves high SNR.
Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5–10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace “dummy scans” in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25–50 and faster than 3D EPI by a factor of 3–5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.
[Display omitted]
Journal Article
Biomarkers of Progression Independent of Relapse Activity—Can We Actually Measure It Yet?
by
Bsteh, Gabriel
,
Dal-Bianco, Assunta
,
Krajnc, Nik
in
Atrophy
,
Berger, Thomas
,
Biological markers
2025
Progression independent of relapse activity (PIRA) is increasingly recognized as a key driver of disability in multiple sclerosis (MS). However, the concept of PIRA remains elusive, with uncertainty surrounding its definition, underlying mechanisms, and methods of quantification. This review examines the current landscape of biomarkers used to predict and measure PIRA, focusing on clinical, imaging, and body fluid biomarkers. Clinical disability scores such as the Expanded Disability Status Scale (EDSS) are widely used, but may lack sensitivity in capturing subtle relapse-independent progression. Imaging biomarkers, including MRI-derived metrics (brain and spinal cord volume loss, chronic active lesions) and optical coherence tomography (OCT) parameters (retinal nerve fiber layer and ganglion cell-inner plexiform layer thinning), offer valuable insights, but often reflect both inflammatory and neurodegenerative processes. Body fluid biomarkers, such as neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP), are promising indicators of axonal damage and glial activation, but their specificity for PIRA remains limited. This review emphasizes the distinction between predicting PIRA—identifying individuals at risk of future progression—and measuring ongoing PIRA-related disability in real time. We highlight the limitations of current biomarkers in differentiating PIRA from relapse-associated activity and call for a clearer conceptual framework to guide future research. Advancing the precision and utility of PIRA biomarkers will require multimodal approaches, longitudinal studies, and standardized protocols to enable their clinical integration and to improve personalized MS management.
Journal Article
Topographical mapping of metabolic abnormalities in multiple sclerosis using rapid echo-less 3D-MR spectroscopic imaging at 7T
by
Trattnig, Siegfried
,
Strasser, Bernhard
,
Hingerl, Lukas
in
Adult
,
Aspartic Acid - analogs & derivatives
,
Aspartic Acid - metabolism
2025
•Echo-less 3D-MRSI at 7T provides high-resolution metabolic maps in just 8 min.•Voxel-wise analysis reveals distinct metabolic patterns in multiple sclerosis.•Elevated myo-inositol primarily affects periventricular white matter beyond lesions.•NAA reductions exceed mI elevation, notably in prefrontal, motor, and sensory areas.•NAA reductions strongly correlate with MS disability score in motor/cognitive areas.
To assess topographical patterns of metabolic abnormalities in the cerebrum of multiple sclerosis (MS) patients and their relationship to clinical disability using rapid echo-less 3D-MR spectroscopic imaging (MRSI) at 7T.
This study included 26 MS patients (13 women; median age 34) and 13 age- and sex-matched healthy controls (7 women; median age 33). Metabolic maps were obtained using echo-less 3D-MRSI at 7T with a 64 × 64 × 33 matrix and a nominal voxel size of 3.4 × 3.4 × 4 mm³ in an 8-minute scan. After spatial normalization, voxel-wise comparisons between MS and controls were conducted to identify clusters of metabolic abnormalities, while correlations with clinical disability were analyzed using Expanded Disability Status Scale (EDSS) scores.
Statistical mapping (FWE-corrected; P<.05) revealed elevated myo-inositol to total creatine (mI/tCr) ratios in the bilateral periventricular white matter and reduced N-acetylaspartate to total creatine (NAA/tCr) within and beyond lesions, notably near the lateral ventricles, cingulate gyrus, and superior frontal gyrus. Patients with sustained disability (EDSS≥2) showed additional reductions in the posterior parietal lobe. A strong negative association was found between NAA/tCr and EDSS in the precentral gyrus (Spearman's rank ρ=-0.58, P=.005), and a moderate positive association between mI/NAA and EDSS in the precentral and superior frontal gyri (ρ=0.47, P=.015).
This study highlights the ability of 3D-MRSI at 7T to map widespread metabolic abnormalities in MS, with NAA reductions in prefrontal, motor, and sensory areas, linked to neuroaxonal damage and disability progression, and elevated mI in periventricular regions, reflecting gliosis.
Journal Article
Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis
by
Riedl, Christian J.
,
Leutmezer, Fritz
,
Weber, Claudia E.
in
Biomarkers
,
CD163 antigen
,
Cerebrospinal fluid
2023
In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated
C1QA
-expressing MC subtypes, characterized by upregulation of
CD163
,
HMOX1
,
HAMP
and, conversely, downregulation of
P2RY12
. We found that pwMS with
≥
4 PRLs had higher sCD163 levels in the CSF than pwMS with
≤
3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with
Hp2-1/Hp2-2
haplotypes had higher clinical disability scores than pwMS with
Hp1-1
. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while
Hp
haplotypes had no noticeable influence on PRL counts, pwMS carriers of a
Hp2
allele might have a higher risk to experience clinical worsening.
Journal Article
Should I stop or should I go on? Disease modifying therapy after the first clinical episode of multiple sclerosis
by
Bsteh Gabriel
,
Paulus, Rommer
,
Leutmezer Fritz
in
Magnetic resonance imaging
,
Multiple sclerosis
,
Neurology
2021
IntroductionTreatment with disease-modifying therapies (DMT) in patients with clinically isolated syndrome (CIS) represents standard care in multiple sclerosis (MS) patients nowadays. Since a proportion of patients may show no evidence of disease activity (NEDA) after some time of treatment, the question might arise about the risks of stopping DMT.MethodsWe present a cohort of 49 patients who started DMT immediately after CIS and had no evidence of disease activity (NEDA-3) for at least five years before discontinuation of therapy. Thereafter, patients underwent clinical and MRI follow-up for at least five consecutive years.ResultsOf 49 patients discontinuing DMT, 53% (n = 26) had NEDA for at least further five years, while 47% (n = 23) showed either a relapse/disease progression (18.4%, n = 9), MRI activity (14.3%, n = 7) or both (14.3%, n = 7). The main predictive factor for sustained NEDA was age at DMT termination. Patients aged > 45 years had a significantly lower risk of disease reactivation (13% vs. 54% in patients aged < 45 years, p < 0.001) after DMT discontinuation.DiscussionIn CIS patients with immediate DMT after their first clinical episode, older age at the time of DMT discontinuation is the main predictive factor for sustained NEDA status.
Journal Article
A case of primary optic pathway demyelination caused by oncocytic oligodendrogliopathy of unknown origin
by
Hainfellner, Johannes A.
,
Rössler, Karl
,
Thurnher, Majda
in
B cells
,
Biomedical and Life Sciences
,
Biomedicine
2022
We report the case of a 22-year-old woman presenting with an acute onset of dizziness, gait dysbalance and blurred vision. Magnetic resonance imaging included 3 Tesla and 7 Tesla imaging and revealed a T2-hyperintense, T1-hypointense, non-contrast-enhancing lesion strictly confined to the white matter affecting the right optic radiation. An extensive ophthalmologic examination yielded mild quadrantanopia but no signs of optic neuropathy. The lesion was biopsied. The neuropathological evaluation revealed a demyelinating lesion with marked tissue vacuolization and granular myelin disintegration accompanied by mild T cell infiltration and a notable absence of myelin uptake by macrophages. Oligodendrocytes were strikingly enlarged, displaying oncocytic characteristics and showed cytoplasmic accumulation of mitochondria, which had mildly abnormal morphology on electron microscopy. The diagnosis of multiple sclerosis was excluded. Harding's disease, a variant of Leber's hereditary optic neuropathy, was then suspected. However, neither PCR for relevant mutations nor whole exome sequencing yielded known pathogenetic mutations in the patient's genome. We present a pattern of demyelinating tissue injury of unknown etiology with an oncocytic change of oligodendrocytes and a lack of adequate phagocytic response by macrophages, which to the best of our knowledge, has not been described before.
Journal Article
Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging
2017
In multiple sclerosis (MS), iron accumulates inside activated microglia/macrophages at edges of some chronic demyelinated lesions, forming rims. In susceptibility-based magnetic resonance imaging at 7 T, iron-laden microglia/macrophages induce a rim of decreased signal at lesion edges and have been associated with slowly expanding lesions. We aimed to determine (1) what lesion types and stages are associated with iron accumulation at their edges, (2) what cells at the lesion edges accumulate iron and what is their activation status, (3) how reliably can iron accumulation at the lesion edge be detected by 7 T magnetic resonance imaging (MRI), and (4) if lesions with rims enlarge over time in vivo, when compared to lesions without rims. Double-hemispheric brain sections of 28 MS cases were stained for iron, myelin, and microglia/macrophages. Prior to histology, 4 of these 28 cases were imaged at 7 T using post-mortem susceptibility-weighted imaging. In vivo, seven MS patients underwent annual neurological examinations and 7 T MRI for 3.5 years, using a fluid attenuated inversion recovery/susceptibility-weighted imaging fusion sequence. Pathologically, we found iron rims around slowly expanding and some inactive lesions but hardly around remyelinated shadow plaques. Iron in rims was mainly present in microglia/macrophages with a pro-inflammatory activation status, but only very rarely in astrocytes. Histological validation of post-mortem susceptibility-weighted imaging revealed a quantitative threshold of iron-laden microglia when a rim was visible. Slowly expanding lesions significantly exceeded this threshold, when compared with inactive lesions (
p
= 0.003). We show for the first time that rim lesions significantly expanded in vivo after 3.5 years, compared to lesions without rims (
p
= 0.003). Thus, slow expansion of MS lesions with rims, which reflects chronic lesion activity, may, in the future, become an MRI marker for disease activity in MS.
Journal Article
Veins in plaques of multiple sclerosis patients – a longitudinal magnetic resonance imaging study at 7 Tesla
by
Trattnig, Siegfried
,
Leutmezer, Fritz
,
Schernthaner, Melanie
in
Adult
,
Case-Control Studies
,
Cerebrovascular Circulation - physiology
2015
Objective
To monitor the venous volumes in plaques of patients with multiple sclerosis (MS) compared to an age-matched control group over a period of 3.5 years.
Methods
Ten MS patients underwent an annual neurological examination and MRI. Susceptibility-weighted imaging (SWI) combined with fluid-attenuated inversion recovery (FLAIR) or FLAIR–like contrast at 7 Tesla (7 T) magnetic resonance imaging (MRI) was used for manual segmentation of veins in plaques, in the normal-appearing white matter (NAWM) and in location-matched white matter of 9 age-matched controls. Venous volume to tissue volume ratio was assessed for each time point in order to describe the dynamics of venous volumes in MS plaques over time.
Results
MS plaques, which were newly detected during the study period, showed significantly higher venous volumes compared to the preplaque area 1 year before plaque detection and the corresponding NAWM regions. Venous volumes in established MS plaques, which were present already in the first scans, were significantly higher compared to the NAWM and controls.
Conclusions
Our data underpin a relation of veins and plaque development in MS and reflect increased apparent venous calibers due to increased venous diameters or increased oxygen consumption in early MS plaques.
Key points
•
Longitudinal 7 T Magnetic Resonance Imaging study of intralesional veins in MS patients
.
•
Venous volumes are significantly increased in newly detected and established MS plaques
.
•
Venous volumes in established MS plaques show a trend to decrease with time
.
Journal Article