Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
49
result(s) for
"Dalvie, Shareefa"
Sort by:
The neural correlates of Childhood Trauma Questionnaire scores in adults: A meta-analysis and review of functional magnetic resonance imaging studies
by
Brooks, Samantha J.
,
Stein, Dan J.
,
Dalvie, Shareefa
in
Abuse
,
Adult
,
Adult Survivors of Child Abuse - psychology
2018
Childhood maltreatment, including abuse and neglect, may have sustained effects on the integrity and functioning of the brain, alter neurophysiological responsivity later in life, and predispose individuals toward psychiatric conditions involving socioaffective disturbances. This meta-analysis aims to quantify associations between self-reported childhood maltreatment and brain function in response to socioaffective cues in adults. Seventeen functional magnetic resonance imaging studies reporting on data from 848 individuals examined with the Childhood Trauma Questionnaire were included in a meta-analysis of whole-brain findings, or a review of region of interest findings. The spatial consistency of peak activations associated with maltreatment exposure was tested using activation likelihood estimation, using a threshold of p < .05 corrected for multiple comparisons. Adults exposed to childhood maltreatment showed significantly increased activation in the left superior frontal gyrus and left middle temporal gyrus, and decreased activation in the left superior parietal lobule and the left hippocampus. Although hyperresponsivity to socioaffective cues in the amygdala and ventral anterior cingulate cortex in correlation with maltreatment severity is a replicated finding in region of interest studies, null results are reported as well. The findings suggest that childhood maltreatment has sustained effects on brain function into adulthood, and highlight potential mechanisms for conveying vulnerability to development of psychopathology.
Journal Article
Genomic insights into the shared and distinct genetic architecture of cognitive function and schizophrenia
by
Smeland, Olav B.
,
O’Connell, Kevin S.
,
Wootton, Olivia
in
631/208/205
,
631/208/212
,
692/308/2056
2024
Cognitive impairment is a major determinant of functional outcomes in schizophrenia, however, understanding of the biological mechanisms underpinning cognitive dysfunction in the disorder remains incomplete. Here, we apply Genomic Structural Equation Modelling to identify latent cognitive factors capturing genetic liabilities to 12 cognitive traits measured in the UK Biobank. We identified three broad factors that underly the genetic correlations between the cognitive tests. We explore the overlap between latent cognitive factors, schizophrenia, and schizophrenia symptom dimensions using a complementary set of statistical approaches, applied to data from the latest schizophrenia genome-wide association study (Ncase = 53,386, Ncontrol = 77,258) and the Thematically Organised Psychosis study (Ncase = 306, Ncontrol = 1060). Global genetic correlations showed a significant moderate negative genetic correlation between each cognitive factor and schizophrenia. Local genetic correlations implicated unique genomic regions underlying the overlap between schizophrenia and each cognitive factor. We found substantial polygenic overlap between each cognitive factor and schizophrenia and biological annotation of the shared loci implicated gene-sets related to neurodevelopment and neuronal function. Lastly, we show that the common genetic determinants of the latent cognitive factors are not predictive of schizophrenia symptoms in the Norwegian Thematically Organized Psychosis cohort. Overall, these findings inform our understanding of cognitive function in schizophrenia by demonstrating important differences in the shared genetic architecture of schizophrenia and cognitive abilities.
Journal Article
Neuroimaging genomics in psychiatry—a translational approach
2017
Neuroimaging genomics is a relatively new field focused on integrating genomic and imaging data in order to investigate the mechanisms underlying brain phenotypes and neuropsychiatric disorders. While early work in neuroimaging genomics focused on mapping the associations of candidate gene variants with neuroimaging measures in small cohorts, the lack of reproducible results inspired better-powered and unbiased large-scale approaches. Notably, genome-wide association studies (GWAS) of brain imaging in thousands of individuals around the world have led to a range of promising findings. Extensions of such approaches are now addressing epigenetics, gene–gene epistasis, and gene–environment interactions, not only in brain structure, but also in brain function. Complementary developments in systems biology might facilitate the translation of findings from basic neuroscience and neuroimaging genomics to clinical practice. Here, we review recent approaches in neuroimaging genomics—we highlight the latest discoveries, discuss advantages and limitations of current approaches, and consider directions by which the field can move forward to shed light on brain disorders.
Journal Article
Novel CYP2E1 haplotype identified in a South African cohort
by
Dalvie, Shareefa
,
Kalideen, Kusha
,
Heathfield, Laura J
in
Alcoholism
,
Alcohols
,
Colleges & universities
2014
Alcohol abuse accounts for approximately 2.5 million deaths annually and is the third highest risk factor for disease and disability. Alcohol is metabolised by polymorphic enzymes and the status of an individual with respect to alcohol metabolising enzymes may have forensic relevance in post-mortems. Baseline frequencies of gene variants involved in alcohol metabolism need to be established to aid the identification of suitable population-specific polymorphisms to genotype during molecular autopsies. The principal alcohol metabolising enzymes include alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and cytochrome P450 2E1 (CYP2E1). Six single nucleotide polymorphisms (SNPs)--rs1229984G>A and rs2066702C>T in ADH1B, rs671G>A in ALDH2, and rs3813867G>C, rs2031920C>T and rs6413432T>A in CYP2E1--were genotyped in 150 individuals from four South African populations: Xhosa, Zulu, South African white and South African coloured. Allele frequencies for each SNP in the four population groups were 0-10% for rs1229984A, 2-12% for rs2066702T, 0-2% for rs671A, 1-4% for rs3813867C, 0-1% for rs2031920T and 3-15% for rs6413432A. Haplotype analysis revealed a novel combination of three SNPs in CYP2E1 whose effects on alcohol metabolism need further investigation. Establishment of baseline frequencies adds to our knowledge of genetic variation in alcohol metabolising enzymes and additional research is required to determine the functional significance of this novel CYP2E1 haplotype. KEYWORDS: CYP2E1; haplotype; alcohol metabolism; molecular autopsy; South Africa
Journal Article
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci
by
Domschke, Katharina
,
Daskalakis, Nikolaos P.
,
Beckham, Jean C.
in
45/43
,
631/208/1515
,
631/208/205/2138
2019
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation,
PARK2
, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations.
Post-traumatic stress disorder (PTSD) is a common mental health problem. Here, the authors report a GWAS from the Psychiatric Genomics Consortium in which they identify two risk loci in European ancestry and one locus in African ancestry individuals and find that PTSD is genetically correlated with several other psychiatric traits.
Journal Article
Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability
2018
The Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group (PGC-PTSD) combined genome-wide case-control molecular genetic data across 11 multiethnic studies to quantify PTSD heritability, to examine potential shared genetic risk with schizophrenia, bipolar disorder, and major depressive disorder and to identify risk loci for PTSD. Examining 20 730 individuals, we report a molecular genetics-based heritability estimate (h2 SNP ) for European-American females of 29% that is similar to h2 SNP for schizophrenia and is substantially higher than h2 SNP in European-American males (estimate not distinguishable from zero). We found strong evidence of overlapping genetic risk between PTSD and schizophrenia along with more modest evidence of overlap with bipolar and major depressive disorder. No single-nucleotide polymorphisms (SNPs) exceeded genome-wide significance in the transethnic (overall) meta-analysis and we do not replicate previously reported associations. Still, SNP-level summary statistics made available here afford the best-available molecular genetic index of PTSD--for both European- and African-American individuals--and can be used in polygenic risk prediction and genetic correlation studies of diverse phenotypes. Publication of summary statistics for ∼10 000 African Americans contributes to the broader goal of increased ancestral diversity in genomic data resources. In sum, the results demonstrate genetic influences on the development of PTSD, identify shared genetic risk between PTSD and other psychiatric disorders and highlight the importance of multiethnic/racial samples. As has been the case with schizophrenia and other complex genetic disorders, larger sample sizes are needed to identify specific risk loci.
Journal Article
Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder
by
Domschke, Katharina
,
Daskalakis, Nikolaos P.
,
Tiwari, Arun K.
in
631/208/205/2138
,
692/699/476
,
Agriculture
2024
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example,
GRIA1
,
GRM8
and
CACNA1E
), developmental, axon guidance and transcription factors (for example,
FOXP2
,
EFNA5
and
DCC
), synaptic structure and function genes (for example,
PCLO
,
NCAM1
and
PDE4B
) and endocrine or immune regulators (for example,
ESR1
,
TRAF3
and
TANK
). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
Multi-ancestry genome-wide analyses identify 95 loci associated with post-traumatic stress disorder and implicate candidate genes, pathways and neurobiological systems underlying its pathophysiology.
Journal Article
Genetic variants associated with longitudinal changes in brain structure across the lifespan
2022
Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.Human brain structure changes throughout the lifespan. Brouwer et al. identified genetic variants that affect rates of brain growth and atrophy. The genes are linked to early brain development and neurodegeneration and suggest involvement of metabolic processes.
Journal Article
Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR
by
Youssef, Nagy A.
,
Katrinli, Seyma
,
Luft, Benjamin J.
in
45/61
,
631/1647/2210
,
692/699/476/1830
2020
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (
AHRR)
associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although
AHRR
methylation is known to associate with smoking, the
AHRR
association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that
AHRR
methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD.
PTSD has been associated with DNA methylation of specific loci in the genome, but studies have been limited by small sample sizes. Here, the authors perform a meta-analysis of DNA methylation data from 10 different cohorts and identify CpGs in AHRR that are associated with PTSD.
Journal Article
Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns
by
Domschke, Katharina
,
Stein, Dan J
,
Kobor, Michael S
in
1300 Biochemistry
,
1600 Chemistry
,
2.1 Biological and endogenous factors
2019
Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall
n
= 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.
Environmental influences during prenatal development may have implications for health and disease later in life. Here, Czamara et al. assess DNA methylation in cord blood from new-born under various models including environmental and genetic effects individually and their additive or interaction effects.
Journal Article