Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
48
result(s) for
"Das, Bhaskar C."
Sort by:
Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma
2018
Autophagy is an evolutionarily conserved catabolic process that plays an essential role in maintaining cellular homeostasis by degrading unneeded cell components. When exposed to hostile environments, such as hypoxia or nutrient starvation, cells hyperactivate autophagy in an effort to maintain their longevity. In densely packed solid tumors, such as glioblastoma, autophagy has been found to run rampant due to a lack of oxygen and nutrients. In recent years, targeting autophagy as a way to strengthen current glioblastoma treatment has shown promising results. However, that protective autophagy inhibition or autophagy overactivation is more beneficial, is still being debated. Protective autophagy inhibition would lower a cell’s previously activated defense mechanism, thereby increasing its sensitivity to treatment. Autophagy overactivation would cause cell death through lysosomal overactivation, thus introducing another cell death pathway in addition to apoptosis. Both methods have been proven effective in the treatment of solid tumors. This systematic review article highlights scenarios where both autophagy inhibition and activation have proven effective in combating chemoresistance and radioresistance in glioblastoma, and how autophagy may be best utilized for glioblastoma therapy in clinical settings.
Journal Article
Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective
by
Saito, Mariko
,
Weiss, Louis M.
,
Das, Sasmita
in
aminoboronic acids
,
Amyotrophic lateral sclerosis
,
bezoxaboroles
2022
A standard goal of medicinal chemists has been to discover efficient and potent drug candidates with specific enzyme-inhibitor abilities. In this regard, boron-based bioactive compounds have provided amphiphilic properties to facilitate interaction with protein targets. Indeed, the spectrum of boron-based entities as drug candidates against many diseases has grown tremendously since the first clinically tested boron-based drug, Velcade. In this review, we collectively represent the current boron-containing drug candidates, boron-containing retinoids, benzoxaboroles, aminoboronic acid, carboranes, and BODIPY, for the treatment of different human diseases.In addition, we also describe the synthesis, key structure–activity relationship, and associated biological activities, such as antimicrobial, antituberculosis, antitumor, antiparasitic, antiprotozoal, anti-inflammatory, antifolate, antidepressant, antiallergic, anesthetic, and anti-Alzheimer’s agents, as well as proteasome and lipogenic inhibitors. This compilation could be very useful in the exploration of novel boron-derived compounds against different diseases, with promising efficacy and lesser side effects.
Journal Article
The Role of Microbiome in Brain Development and Neurodegenerative Diseases
by
Saito, Mariko
,
Das, Sasmita
,
Nandwana, Nitesh K.
in
Alzheimer's disease
,
Animals
,
Antibiotics
2022
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut–Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers.
Journal Article
Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives
by
Anguiano, Jaime
,
Gavathiotis, Evripidis
,
Mahalingam, Murugesan
in
631/80/86
,
631/92/609
,
631/92/613
2013
Structure-based design of RARα antagonists leads to compounds that can selectively upregulate chaperone-mediated autophagy (CMA), yielding the first chemically tractable target for regulating CMA in cells.
Chaperone-mediated autophagy (CMA) contributes to cellular quality control and the cellular response to stress through the selective degradation of cytosolic proteins in lysosomes. A decrease in CMA activity occurs in aging and in age-related disorders (for example, neurodegenerative diseases and diabetes). Although prevention of this age-dependent decline through genetic manipulation in mice has proven beneficial, chemical modulation of CMA is not currently possible, owing in part to the lack of information on the signaling mechanisms that modulate this pathway. In this work, we report that signaling through retinoic acid receptor α (RARα) inhibits CMA and apply structure-based chemical design to develop synthetic derivatives of all-
trans
-retinoic acid to specifically neutralize this inhibitory effect. We demonstrate that chemical enhancement of CMA protects cells from oxidative stress and from proteotoxicity, supporting a potential therapeutic opportunity when reduced CMA contributes to cellular dysfunction and disease.
Journal Article
Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease
by
Das, Bhaskar
,
Dasgupta, Somsankar
,
Ray, Swapan
in
Acne
,
Alzheimer's disease
,
Alzheimer′s disease; amyloid plaques; neurofibrillary tangles; neuroinflammation; neurodegeneration; retinoids
2019
All retinoids, which can be natural and synthetic, are chemically related to vitamin A. Both natural and synthetic retinoids use specific nuclear receptors such as retinoic acid receptors and retinoid X receptors to activate specific signaling pathways in the cells. Retinoic acid signaling is extremely important in the central nervous system. Impairment of retinoic acid signaling pathways causes severe pathological processes in the central nervous system, especially in the adult brain. Retinoids have major roles in neural patterning, differentiation, axon outgrowth in normal development, and function of the brain. Impaired retinoic acid signaling results in neuroinflammation, oxidative stress, mitochondrial malfunction, and neurodegeneration leading to progressive Alzheimer's disease, which is pathologically characterized by extra-neuronal accumulation of amyloid plaques (aggregated amyloid-beta) and intra-neurofibrillary tangles (hyperphosphorylated tau protein) in the temporal lobe of the brain. Alzheimer's disease is the most common cause of dementia and loss of memory in old adults. Inactive cholinergic neurotransmission is responsible for cognitive deficits in Alzheimer's disease patients. Deficiency or deprivation of retinoic acid in mice is associated with loss of spatial learning and memory. Retinoids inhibit expression of chemokines and neuroinflammatory cytokines in microglia and astrocytes, which are activated in Alzheimer's disease. Stimulation of retinoic acid receptors and retinoid X receptors slows down accumulation of amyloids, reduces neurodegeneration, and thereby prevents pathogenesis of Alzheimer's disease in mice. In this review, we described chemistry and biochemistry of some natural and synthetic retinoids and potentials of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer's disease.
Journal Article
Development of a New Methodology for Dearomative Borylation of Coumarins and Chromenes and Its Applications to Synthesize Boron-Containing Retinoids
2023
Dearomative borylation of coumarins and chromenes via conjugate addition represents a relatively unexplored and challenging task. To address this issue, herein, we report a new and general copper (I) catalyzed dearomative borylation process to synthesize boron-containing oxacycles. In this report, the borylation of coumarins, chromones, and chromenes comprising functional groups, such as esters, nitriles, carbonyls, and amides, has been achieved. In addition, the method generates different classes of potential boron-based retinoids, including the ones with oxadiazole and anthocyanin motifs. The borylated oxacycles can serve as suitable intermediates to generate a library of compounds.
Journal Article
Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer’s Disease
by
Saito, Mariko
,
Weiss, Louis M.
,
Williams, Colin R. O.
in
Alzheimer Disease - drug therapy
,
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
2025
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer’s disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Journal Article
Design and Synthesis of New Boron-Based Benzoc1,2,5oxadiazoles and Benzoc1,2,5thiadiazoles as Potential Hypoxia Inhibitors
by
Das, Sasmita
,
Shareef, Mohammed Adil
,
Das, Bhaskar C.
in
Acids
,
Anticancer properties
,
Antitumor agents
2023
Benzo[c][1,2,5]oxadiazoles and benzo[c][1,2,5]thiadiazoles are recognized to possess potent pharmacological activities including anticancer potential. In continuation of our research endeavors in the development of boron-based heterocycles as potential therapeutic agents, herein we report the design and synthesis of new series of boron-based benzo[c][1,2,5]oxadiazoles and benzo[c][1,2,5]thiadiazoles as anticancer agents targeting tumor hypoxia. A series of seventeen compounds were synthesized in two steps in an efficient manner via substitution reactions followed by subsequent hydrolysis of aryltrifluoroboronate salts into corresponding boronic acid derivatives in the presence of silica. This is the first example to develop boron-based hypoxia agents. The synthesized hybrids were characterized by suitable spectroscopic techniques. The biological studies are currently underway.
Journal Article
Effects of retinoic acid receptor α modulators on developmental ethanol-induced neurodegeneration and neuroinflammation
by
Saito, Mariko
,
Smiley, John F.
,
Subbanna, Shivakumar
in
Agonists
,
Animal cognition
,
astrocyte
2023
Ethanol exposure in neonatal mice induces acute neurodegeneration followed by long-lasting glial activation and GABAergic cell deficits along with behavioral abnormalities, providing a third trimester model of fetal alcohol spectrum disorders (FASD). Retinoic acid (RA), the active form of vitamin A, regulates transcription of RA-responsive genes and plays essential roles in the development of embryos and their CNS. Ethanol has been shown to disturb RA metabolism and signaling in the developing brain, which may be a cause of ethanol toxicity leading to FASD. Using an agonist and an antagonist specific to RA receptor α (RARα), we studied how RA/RARα signaling affects acute and long-lasting neurodegeneration and activation of phagocytic cells and astrocytes caused by ethanol administered to neonatal mice. We found that an RARα antagonist (BT382) administered 30 min before ethanol injection into postnatal day 7 (P7) mice partially blocked acute neurodegeneration as well as elevation of CD68-positive phagocytic cells in the same brain area. While an RARα agonist (BT75) did not affect acute neurodegeneration, BT75 given either before or after ethanol administration ameliorated long-lasting astrocyte activation and GABAergic cell deficits in certain brain regions. Our studies using Nkx2.1-Cre;Ai9 mice, in which major GABAergic neurons and their progenitors in the cortex and the hippocampus are labeled with constitutively expressed tdTomato fluorescent protein, indicate that the long-lasting GABAergic cell deficits are mainly caused by P7 ethanol-induced initial neurodegeneration. However, the partial reduction of prolonged GABAergic cell deficits and glial activation by post-ethanol BT75 treatment suggests that, in addition to the initial cell death, there may be delayed cell death or disturbed development of GABAergic cells, which is partially rescued by BT75. Since RARα agonists including BT75 have been shown to exert anti-inflammatory effects, BT75 may rescue GABAergic cell deficits by reducing glial activation/neuroinflammation.
Journal Article
SMARC-B1 deficient sinonasal carcinoma metastasis to the brain with next generation sequencing data: a case report of perineural invasion progressing to leptomeningeal invasion
by
Sardar, Sehrish
,
Patterson, John D.
,
Gomez-Acevedo, Horacio
in
Adult
,
Biomarkers, Tumor
,
Biomedical and Life Sciences
2019
Background
SMARCB1-deficient sinonasal carcinoma (SDSC) is an aggressive subtype of head and neck cancers that has a poor prognosis despite multimodal therapy. We present a unique case with next generation sequencing data of a patient who had SDSC with perineural invasion to the trigeminal nerve that progressed to a brain metastasis and eventually leptomeningeal spread.
Case presentation
A 42 year old female presented with facial pain and had resection of a tumor along the V2 division of the trigeminal nerve on the right. She underwent adjuvant stereotactic radiation. She developed further neurological symptoms and imaging demonstrated the tumor had infiltrated into the cavernous sinus as well as intradurally. She had surgical resection for removal of her brain metastasis and decompression of the cavernous sinus. Following her second surgery, she had adjuvant radiation and chemotherapy. Several months later she had quadriparesis and imaging was consistent with leptomeningeal spread. She underwent palliative radiation and ultimately transitioned quickly to comfort care and expired. Overall survival from time of diagnosis was 13 months. Next generation sequencing was carried out on her primary tumor and brain metastasis. The brain metastatic tissue had an increased tumor mutational burden in comparison to the primary.
Conclusions
This is the first report of SDSC with perineural invasion progressing to leptomeningeal carcinomatosis. Continued next generation sequencing of the primary and metastatic tissue by clinicians is encouraged toprovide further insights into metastatic progression of rare solid tumors.
Journal Article