Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
44 result(s) for "Daughtry, Craig S. T."
Sort by:
Comparison of Five Spectral Indices and Six Imagery Classification Techniques for Assessment of Crop Residue Cover Using Four Years of Landsat Imagery
Determining residue cover on agricultural land is an important task. Residue cover helps reduce soil erosion and helps sequester carbon. Many studies have used either spectral indices or classification techniques to map residue cover using satellite imagery. Unfortunately, most of these studies use only a few spectral indices or classification techniques and generally only study an area for a single year with a certain level of success. This manuscript presents an investigation of five spectral indices and six classification techniques over four years to determine if a single spectral index or classification technique performs consistently better than the others. A second objective is to determine whether using the coefficient of determination (R2) from the relationship between residue cover and a spectral index is a reasonable substitute for calculating accuracy. Field visits were conducted for each of the years studied and used to create the correlations with the spectral indices and as ground truth for the classification techniques. It was found that no spectral index/classification technique is consistently better than all the others. Classification techniques tended to be more accurate in 2011 and 2013, while spectral indices tended to be more accurate in 2015 and 2018. The combination of spectral indices/classification techniques outperformed the individual approach. For the second objective, it was found that R2 is not a great indicator of accuracy. Root mean square error (RMSE) is a better indicator of accuracy than R2. However, simply calculating the accuracy would be the best of all.
Effect of Soil Spectral Properties on Remote Sensing of Crop Residue Cover
Conservation tillage practices often leave appreciable amounts of crop residues on soil surfaces after harvesting and generally improve soil structure, enhance soil organic C (SOC) content, and reduce soil erosion. Remote sensing methods have shown great promise in efficiently estimating crop residue cover, and thus inferring soil tillage intensity. Furthermore, these tillage intensity estimates can be used in soil C models. Reflectance spectra of more than 4200 soils and 80 crop residues were measured in the laboratory across the 350- to 2500-nm wavelength region. Six remote sensing spectral indices were used to estimate crop residue cover: the Cellulose Absorption Index (CAI), the Lignin-Cellulose Absorption Index (LCA), the Normalized Difference Tillage Index (NDTI), the Normalized Difference Senescent Vegetation Index (NDSVI), and the Normalized Difference Indices 5 and 7 (NDI5 and NDI7, respectively). Soil mineralogy and SOC affected these spectral indices for crop residue cover more than soil taxonomic order, which generally had little effect on spectral reflectance. The values of the spectral indices for soils were similar within Land Resource Regions and, specifically, for Major Land Resource Areas. The CAI showed the best separation between soils and residues, followed by LCA and NDTI. Although NDSVI, NDI5, and NDI7 had significant overlaps between soil and residue index values, assessments of crop residue cover classes may be possible with local calibrations. Future satellite sensors should include appropriate bands for assessing crop residue and nonphotosynthetic vegetation.
Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices
Crop residues serve many important functions in agricultural conservation including preserving soil moisture, building soil organic carbon, and preventing erosion. Percent crop residue cover on a field surface reflects the outcome of tillage intensity and crop management practices. Previous studies using proximal hyperspectral remote sensing have demonstrated accurate measurement of percent residue cover using residue indices that characterize cellulose and lignin absorption features found between 2100 nm and 2300 nm in the shortwave infrared (SWIR) region of the electromagnetic spectrum. The 2014 launch of the WorldView-3 (WV3) satellite has now provided a space-borne platform for the collection of narrow band SWIR reflectance imagery capable of measuring these cellulose and lignin absorption features. In this study, WorldView-3 SWIR imagery (14 May 2015) was acquired over farmland on the Eastern Shore of Chesapeake Bay (Maryland, USA), was converted to surface reflectance, and eight different SWIR reflectance indices were calculated. On-farm photographic sampling was used to measure percent residue cover at a total of 174 locations in 10 agricultural fields, ranging from plow-till to continuous no-till management, and these in situ measurements were used to develop percent residue cover prediction models from the SWIR indices using both polynomial and linear least squares regressions. Analysis was limited to agricultural fields with minimal green vegetation (Normalized Difference Vegetation Index < 0.3) due to expected interference of vegetation with the SWIR indices. In the resulting residue prediction models, spectrally narrow residue indices including the Shortwave Infrared Normalized Difference Residue Index (SINDRI) and the Lignin Cellulose Absorption Index (LCA) were determined to be more accurate than spectrally broad Landsat-compatible indices such as the Normalized Difference Tillage Index (NDTI), as determined by respective R2 values of 0.94, 0.92, and 0.84 and respective residual mean squared errors (RMSE) of 7.15, 8.40, and 12.00. Additionally, SINDRI and LCA were more resistant to interference from low levels of green vegetation. The model with the highest correlation (2nd order polynomial SINDRI, R2 = 0.94) was used to convert the SWIR imagery into a map of crop residue cover for non-vegetated agricultural fields throughout the imagery extent, describing the distribution of tillage intensity within the farm landscape. WorldView-3 satellite imagery provides spectrally narrow SWIR reflectance measurements that show utility for a robust mapping of crop residue cover.
Evaluation of SWIR Crop Residue Bands for the Landsat Next Mission
This research reports the findings of a Landsat Next expert review panel that evaluated the use of narrow shortwave infrared (SWIR) reflectance bands to measure ligno-cellulose absorption features centered near 2100 and 2300 nm, with the objective of measuring and mapping non-photosynthetic vegetation (NPV), crop residue cover, and the adoption of conservation tillage practices within agricultural landscapes. Results could also apply to detection of NPV in pasture, grazing lands, and non-agricultural settings. Currently, there are no satellite data sources that provide narrowband or hyperspectral SWIR imagery at sufficient volume to map NPV at a regional scale. The Landsat Next mission, currently under design and expected to launch in the late 2020’s, provides the opportunity for achieving increased SWIR sampling and spectral resolution with the adoption of new sensor technology. This study employed hyperspectral data collected from 916 agricultural field locations with varying fractional NPV, fractional green vegetation, and surface moisture contents. These spectra were processed to generate narrow bands with centers at 2040, 2100, 2210, 2260, and 2230 nm, at various bandwidths, that were subsequently used to derive 13 NPV spectral indices from each spectrum. For crop residues with minimal green vegetation cover, two-band indices derived from 2210 and 2260 nm bands were top performers for measuring NPV (R^(2) = 0.81, RMSE = 0.13) using bandwidths of 30 to 50 nm, and the addition of a third band at 2100 nm increased resistance to atmospheric correction residuals and improved mission continuity with Landsat 8 Operational Land Imager Band 7. For prediction of NPV over a full range of green vegetation cover, the Cellulose Absorption Index, derived from 2040, 2100, and 2210 nm bands, was top performer (R^(2) = 0.77, RMSE = 0.17), but required a narrow (≤20 nm) bandwidth at 2040 nm to avoid interference from atmospheric carbon dioxide absorption. In comparison, broadband NPV indices utilizing Landsat 8 bands centered at 1610 and 2200 nm performed poorly in measuring fractional NPV (R^(2) = 0.44), with significantly increased interference from green vegetation
Diurnal and Seasonal Variations in Chlorophyll Fluorescence Associated with Photosynthesis at Leaf and Canopy Scales
There is a critical need for sensitive remote sensing approaches to monitor the parameters governing photosynthesis, at the temporal scales relevant to their natural dynamics. The photochemical reflectance index (PRI) and chlorophyll fluorescence (F) offer a strong potential for monitoring photosynthesis at local, regional, and global scales, however the relationships between photosynthesis and solar induced F (SIF) on diurnal and seasonal scales are not fully understood. This study examines how the fine spatial and temporal scale SIF observations relate to leaf level chlorophyll fluorescence metrics (i.e., PSII yield, YII and electron transport rate, ETR), canopy gross primary productivity (GPP), and PRI. The results contribute to enhancing the understanding of how SIF can be used to monitor canopy photosynthesis. This effort captured the seasonal and diurnal variation in GPP, reflectance, F, and SIF in the O2A (SIFA) and O2B (SIFB) atmospheric bands for corn (Zea mays L.) at a study site in Greenbelt, MD. Positive linear relationships of SIF to canopy GPP and to leaf ETR were documented, corroborating published reports. Our findings demonstrate that canopy SIF metrics are able to capture the dynamics in photosynthesis at both leaf and canopy levels, and show that the relationship between GPP and SIF metrics differs depending on the light conditions (i.e., above or below saturation level for photosynthesis). The sum of SIFA and SIFB (SIFA+B), as well as the SIFA+B yield, captured the dynamics in GPP and light use efficiency, suggesting the importance of including SIFB in monitoring photosynthetic function. Further efforts are required to determine if these findings will scale successfully to airborne and satellite levels, and to document the effects of data uncertainties on the scaling.
Spectral Estimates of Crop Residue Cover and Density for Standing and Flat Wheat Stubble
Crop residue is important for erosion control, soil water storage, filling gaps in various agroecosystem-based modeling, and sink for atmospheric carbon. The use of remote sensing technology provides a fast, objective, and efficient tool for measuring and managing this resource. The challenge is to distinguish the crop residue from the soil and effectively estimate the residue cover across a variety of landscapes. The objective of this study is to assess a select Landsat Thematic Mapper (TM) and hyperspectral-based indices in estimating crop residue cover and amount for both standing and laid flat, and between two winter wheat (Triticum aestivum L.) harvest managements (i.e., stripper-header and conventional header) and fallow following proso-millet (Panicum miliaceum L.) plots. The primary plots were located in Colorado with additional plots in eastern Montana, Oregon, and Washington states. Data collected include hyperspectral scans, crop residue amount (by weight) and residue cover (by photo-grid). Mean analyses, correlation tests, and spectral signature comparison show that the relative position of the crop residues affected the values of some remote sensing indices more than harvest management. Geographical location did not seem to influence the results. There was not enough evidence to support the use of these indices to accurately estimate the amount of residue. Hyperspectral data may deliver better estimates, but in its absence, the use of two or more of these datasets might improve the estimation of residue cover. This information will be useful in guiding analysis of remotely sensed data and in planning data acquisition programs for crop residue, which are essentially nonexistent at present.
Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring
Payload size and weight are critical factors for small Unmanned Aerial Vehicles (UAVs). Digital color-infrared photographs were acquired from a single 12-megapixel camera that did not have an internal hot-mirror filter and had a red-light-blocking filter in front of the lens, resulting in near-infrared (NIR), green and blue images. We tested the UAV-camera system over two variably-fertilized fields of winter wheat and found a good correlation between leaf area index and the green normalized difference vegetation index (GNDVI). The low cost and very-high spatial resolution associated with the camera-UAV system may provide important information for site-specific agriculture.
Spaceborne imaging spectroscopy enables carbon trait estimation in cover crop and cash crop residues
PurposeCover crops and reduced tillage are two key climate smart agricultural practices that can provide agroecosystem services including improved soil health, increased soil carbon sequestration, and reduced fertilizer needs. Crop residue carbon traits (i.e., lignin, holocellulose, non-structural carbohydrates) and nitrogen concentrations largely mediate decomposition rates and amount of plant-available nitrogen accessible to cash crops and determine soil carbon residence time. Non-destructive approaches to quantify these important traits are possible using spectroscopy.MethodsThe objective of this study was to evaluate the efficacy of spectroscopy instruments to quantify crop residue biochemical traits in cover crop agriculture systems using partial least squares regression models and a combination of (1) the band equivalent reflectance (BER) of the PRecursore IperSpettrale della Missione Applicativa (PRISMA) imaging spectroscopy sensor derived from laboratory collected Analytical Spectral Devices (ASD) spectra (n = 296) of 11 cover crop species and three cash crop species, and (2) spaceborne PRISMA imagery that coincided with destructive crop residue collections in the spring of 2022 (n = 65). Spectral range was constrained to 1200 to 2400 nm to reduce the likelihood of confounding relationships in wavelengths sensitive to plant pigments or those related to canopy structure for both analytical approaches.ResultsModels using laboratory BER of PRISMA all demonstrated high accuracies and low errors for estimation of nitrogen and carbon traits (adj. R2 = 0.86 − 0.98; RMSE = 0.24 − 4.25%) and results indicate that a single model may be used for a given trait across all species. Models using spaceborne imaging spectroscopy demonstrated that crop residue carbon traits can be successfully estimated using PRISMA imagery (adj. R2 = 0.65 − 0.75; RMSE = 2.71 − 4.16%). We found moderate relationships between nitrogen concentration and PRISMA imagery (adj. R2 = 0.52; RMSE = 0.25%), which is partly related to the range of nitrogen in these senesced crop residues (0.38–1.85%). PRISMA imagery models were also influenced by atmospheric absorption, variability in surface moisture content, and some presence of green vegetation.ConclusionAs spaceborne imaging spectroscopy data become more widely available from upcoming missions, crop residue trait estimates could be regularly generated and integrated into decision support tools to calculate decomposition rates and associated nitrogen credits to inform precision field management, as well as to enable measurement, monitoring, reporting, and verification of net carbon benefits from climate smart agricultural practice adoption in an emerging carbon marketplace.
Comparison of Methods for Modeling Fractional Cover Using Simulated Satellite Hyperspectral Imager Spectra
Remotely sensed data can be used to model the fractional cover of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil in natural and agricultural ecosystems. NPV and soil cover are difficult to estimate accurately since absorption by lignin, cellulose, and other organic molecules cannot be resolved by broadband multispectral data. A new generation of satellite hyperspectral imagers will provide contiguous narrowband coverage, enabling new, more accurate, and potentially global fractional cover products. We used six field spectroscopy datasets collected in prior experiments from sites with partial crop, grass, shrub, and low-stature resprouting tree cover to simulate satellite hyperspectral data, including sensor noise and atmospheric correction artifacts. The combined dataset was used to compare hyperspectral index-based and spectroscopic methods for estimating GV, NPV, and soil fractional cover. GV fractional cover was estimated most accurately. NPV and soil fractions were more difficult to estimate, with spectroscopic methods like partial least squares (PLS) regression, spectral feature analysis (SFA), and multiple endmember spectral mixture analysis (MESMA) typically outperforming hyperspectral indices. Using an independent validation dataset, the lowest root mean squared error (RMSE) values were 0.115 for GV using either normalized difference vegetation index (NDVI) or SFA, 0.164 for NPV using PLS, and 0.126 for soil using PLS. PLS also had the lowest RMSE averaged across all three cover types. This work highlights the need for more extensive and diverse fine spatial scale measurements of fractional cover, to improve methodologies for estimating cover in preparation for future hyperspectral global monitoring missions.
Chlorophyll Meter Calibrations for Chlorophyll Content Using Measured and Simulated Leaf Transmittances
Konica-Minolta SPAD-502 leaf chlorophyll meters provide a relative value of leaf chlorophyll content, and from the literature, there are considerable variations among the calibration equations between total chlorophyll contents (mg chlorophyll a + b cm–2) and SPAD-502 values. Our objective was to determine the leaf properties that contributed to the variations in calibration. We determined the internal calibration coefficient of five SPAD-502 meters so that leaf transmittances in the red (650 nm) and near-infrared (940 nm) could be used to calculate SPAD-502 values. A leaf optics model, PROSPECT, was used to simulate transmittances and the chlorophyll–SPAD-502 relationship for different leaf optical properties. Spectral and leaf data from maize (Zea mays L.) showed that PROSPECT predicted leaf transmittances within 2%. Maize leaf data used in the PROSPECT model predicted the relationship between chlorophyll content and the SPAD-502 value, although a polynomial regression was a better fit to the data. There was a physical interaction between chlorophyll content and optical leaf structure affecting leaf transmittances, which is not in the equation for calculating SPAD-502 values. Changing the PROSPECT leaf structure parameter resulted in different chlorophyll–SPAD-502 meter relationships, which were similar to the measured range of variation from calibration equations found in the literature. If the red and near-infrared transmittances are saved for each chlorophyll meter reading, then leaf radiative transfer models such as PROSPECT may be inverted to determine the actual leaf chlorophyll content.