Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
7,260
result(s) for
"David Armstrong"
Sort by:
The Potential Role of Sensors, Wearables and Telehealth in the Remote Management of Diabetes-Related Foot Disease
2020
Diabetes-related foot disease (DFD), which includes foot ulcers, infection and gangrene, is a leading cause of the global disability burden. About half of people who develop DFD experience a recurrence within one year. Long-term medical management to reduce the risk of recurrence is therefore important to reduce the global DFD burden. This review describes research assessing the value of sensors, wearables and telehealth in preventing DFD. Sensors and wearables have been developed to monitor foot temperature, plantar pressures, glucose, blood pressure and lipids. The monitoring of these risk factors along with telehealth consultations has promise as a method for remotely managing people who are at risk of DFD. This approach can potentially avoid or reduce the need for face-to-face consultations. Home foot temperature monitoring, continuous glucose monitoring and telehealth consultations are the approaches for which the most highly developed and user-friendly technology has been developed. A number of clinical studies in people at risk of DFD have demonstrated benefits when using one of these remote monitoring methods. Further development and evidence are needed for some of the other approaches, such as home plantar pressure and footwear adherence monitoring. As yet, no composite remote management program incorporating remote monitoring and the management of all the key risk factors for DFD has been developed and implemented. Further research assessing the feasibility and value of combining these remote monitoring approaches as a holistic way of preventing DFD is needed.
Journal Article
This child, every child : a book about the world's children
Examines how children from different countries around the world live and how their lives differ from children elsewhere, including issues such as access to water, healthcare, and education.
Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer
by
Padula, William V.
,
Swerdlow, Mark A.
,
Armstrong, Alexandria A.
in
Amputation
,
Amputation, Surgical - economics
,
Amputation, Surgical - mortality
2020
Background
In 2007, we reported a summary of data comparing diabetic foot complications to cancer. The purpose of this brief report was to refresh this with the best available data as they currently exist. Since that time, more reports have emerged both on cancer mortality and mortality associated with diabetic foot ulcer (DFU), Charcot arthropathy, and diabetes-associated lower extremity amputation.
Methods
We collected data reporting 5-year mortality from studies published following 2007 and calculated a pooled mean. We evaluated data from DFU, Charcot arthropathy and lower extremity amputation. We dichotomized high and low amputation as proximal and distal to the ankle, respectively. This was compared with cancer mortality as reported by the American Cancer Society and the National Cancer Institute.
Results
Five year mortality for Charcot, DFU, minor and major amputations were 29.0, 30.5, 46.2 and 56.6%, respectively. This is compared to 9.0% for breast cancer and 80.0% for lung cancer. 5 year pooled mortality for all reported cancer was 31.0%.
Direct costs of care for diabetes in general was $237 billion in 2017. This is compared to $80 billion for cancer in 2015. As up to one-third of the direct costs of care for diabetes may be attributed to the lower extremity, these are also readily comparable.
Conclusion
Diabetic lower extremity complications remain enormously burdensome. Most notably, DFU and LEA appear to be more than just a marker of poor health. They are independent risk factors associated with premature death. While advances continue to improve outcomes of care for people with DFU and amputation, efforts should be directed at primary prevention as well as those for patients in diabetic foot ulcer remission to maximize ulcer-free, hospital-free and activity-rich days.
Journal Article
High-Entropy Alloys for Advanced Nuclear Applications
by
Barron, Paul J.
,
Carruthers, Alexander W.
,
Middleburgh, Simon C.
in
accident tolerant fuels
,
alloy design
,
Alloys
2021
The expanded compositional freedom afforded by high-entropy alloys (HEAs) represents a unique opportunity for the design of alloys for advanced nuclear applications, in particular for applications where current engineering alloys fall short. This review assesses the work done to date in the field of HEAs for nuclear applications, provides critical insight into the conclusions drawn, and highlights possibilities and challenges for future study. It is found that our understanding of the irradiation responses of HEAs remains in its infancy, and much work is needed in order for our knowledge of any single HEA system to match our understanding of conventional alloys such as austenitic steels. A number of studies have suggested that HEAs possess ‘special’ irradiation damage resistance, although some of the proposed mechanisms, such as those based on sluggish diffusion and lattice distortion, remain somewhat unconvincing (certainly in terms of being universally applicable to all HEAs). Nevertheless, there may be some mechanisms and effects that are uniquely different in HEAs when compared to more conventional alloys, such as the effect that their poor thermal conductivities have on the displacement cascade. Furthermore, the opportunity to tune the compositions of HEAs over a large range to optimise particular irradiation responses could be very powerful, even if the design process remains challenging.
Journal Article
Ceramic composites: A review of toughening mechanisms and demonstration of micropillar compression for interface property extraction
by
Hosemann, Peter
,
Kabel, Joey
,
Zayachuk, Yevhen
in
Applied and Technical Physics
,
Bending stresses
,
Biomaterials
2018
Ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method for extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ∼2.5 J/m2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. This research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.
Journal Article
A Diabetic Emergency One Million Feet Long: Disparities and Burdens of Illness among Diabetic Foot Ulcer Cases within Emergency Departments in the United States, 2006–2010
2015
To evaluate the magnitude and impact of diabetic foot ulcers (DFUs) in emergency department (ED) settings from 2006-2010 in the United States (US).
This cross-sectional study utilized Agency for Healthcare Research and Quality (AHRQ) Healthcare Cost and Utilization Project (HCUP) National Emergency Department Sample (NEDS) discharge records of ED cases among persons ≥18 years with any-listed diagnosis of DFUs. Multivariable analyses were conducted for clinical outcomes of patient disposition from the ED and economic outcomes of charges and lengths of stay based upon patient demographic and socioeconomic factors, hospital characteristics, and comorbid disease states.
Overall, 1,019,861 cases of diabetic foot complications presented to EDs in the US from 2006-2010, comprising 1.9% of the 54.2 million total diabetes cases. The mean patient age was 62.5 years and 59.4% were men. The national bill was $1.9 billion per year in the ED and $8.78 billion per year (US$ 2014) including inpatient charges among the 81.2% of cases that were admitted. Clinical outcomes included mortality in 2.0%, sepsis in 9.6% of cases and amputation in 10.5% (major-minor amputation ratio of 0.46). Multivariable analyses found that those residing in non-urban locations were associated with +51.3%, +14.9%, and +41.4% higher odds of major amputation, minor amputation, and inpatient death, respectively (p<0.05). Medicaid beneficiaries incurred +21.1% and +25.1% higher odds for major or minor amputations, respectively, than Medicare patients (p<0.05). Persons within the lowest income quartile regions were associated with a +38.5% higher odds of major amputation (p<0.05) versus the highest income regions.
Diabetic foot complications exact a substantial clinical and economic toll in acute care settings, particularly among the rural and working poor. Clear opportunities exist to reduce costs and improve outcomes for this systematically-neglected condition by establishing effective practice paradigms for screening, prevention, and coordinated care.
Journal Article